Age of deformation within the Central Metasedimentary Belt boundary thrust zone, southwest Grenville Orogen: constraints on the collision of the Mid-Proterozoic Elzevir terrane

1993 ◽  
Vol 30 (6) ◽  
pp. 1155-1165 ◽  
Author(s):  
Sally J. McEachern ◽  
Otto van Breemen

U–Pb zircon and titanite geochronology on syntectonic intrusions from the Ontario Central Metasedimentary Belt boundary thrust zone has constrained the timing of two major periods of northwest-directed ductile thrusting on this crustal-scale shear zone. Initiation of deep-seated uppermost amphibolite facies deformation is constrained to a period before 1190 Ma, over 100 Ma earlier than previous estimates. Major reimbrication of the shear zone took place ca. 1080 – 1060 Ma and was more pronounced in the southwestern segment. The initiation of deformation within the boundary thrust zone coincides with the emplacement of the hanging wall Elzevir terrane of the Central Metasedimentary Belt onto the Mid-Proterozoic Laurentian margin. The structural nature and temporal and kinematic consistency of the reimbrication phase along the 200 km exposed length of the shear zone is thought to be due to within-plate reactivation of the existing, rheologically weak structure, a result of continent–continent collision ca. 1080–1060 Ma during the later stage of the Grenville orogenic cycle.Collision of the Elzevir terrane, interpreted to be an ensialic marginal basin, with the Laurentian margin along the Central Metasedimentary Belt boundary thrust zone is thought to potentially record closure of the marginal basin ca. 1190 Ma. A distinctive tonalitic suite of rocks preserved in the boundary thrust zone may be composed of fragments of the remnant arc to the marginal basin.

1996 ◽  
Vol 33 (5) ◽  
pp. 691-702 ◽  
Author(s):  
Sally Pehrsson ◽  
Simon Hanmer ◽  
Otto van Breemen

The Raglan gabbro belt of the Ontario Grenville Orogen is coincident with the top of the Central Metasedimentary Belt boundary thrust zone, a major mid-crustal shear zone separating the Central Gneiss Belt in the footwall from the Central Metasedimentary Belt in the hanging wall. It has been suggested that the gabbros making up the belt are coeval, that they formed in a marginal basin within the Central Metasedimentary Belt, and that they formed a horizon of Theologically stiff material that controlled the localization of the top of the boundary thrust zone during its initiation as the marginal basin closed at ca. 1190 Ma. U–Pb zircon dating of plutons within the Raglan gabbro belt was undertaken to test the coeval nature of intrusions in the belt. Magmatic crystallization ages for three of the gabbros fall in the range 1246–1227 Ma, and a fourth yields a minimum age of ca. 1175 Ma. The results are permissive of a common origin for the gabbros and allow that the Raglan gabbro belt may have been related to the marginal basin, at least with respect to the later stages of its evolution. Inherited 1440–1301 Ma zircons in the gabbros suggest interaction with underlying Central Gneiss Belt crust during magmatism and support an ensialic marginal-basin model, as opposed to an island-arc model, for the evolution of the northwestern part of the Central Metasedimentary Belt.


Author(s):  
J.F. Dewey ◽  
J.F. Casey

Abstract. The narrow, short-lived Taconic-Grampian Orogen occurs along the north-western margin of the Appalachian-Caledonian Belt from, at least, Alabama to Scotland, a result of the collision of a series of early Ordovician oceanic island arcs with the rifted margin of Laurentia. The present distribution of Taconian-Grampian ophiolites is unlikely to represent a single fore-arc from Alabama to Scotland colliding at the same time with the continental margin along its whole length; more likely is that there were several Ordovician arcs with separate ophiolites. The collision suture is at the thrust base of obducted fore-arc ophiolite complexes, and obduction distance was about two hundred kilometres. Footwalls to the ophiolites are, sequentially towards the continent, continental margin rift sediments and volcanics and overlying rise sediments, continental shelf slope carbonates, and sediments of foreland flexural basins. The regionally-flat obduction thrust complex between the ophiolite and the rifted Laurentian margin is the collision suture between arc and continent. A particular problem in drawing tectonic profiles across the Taconic-Grampian Zone is several orogen-parallel major strike-slip faults, both sinistral and dextral, of unknown displacements, which may juxtapose portions of different segments. In western Newfoundland, most of the Grenville basement beneath the Fleur-de-Lys metamorphic complex (Neoproterozoic to early Ordovician meta-sediments) was eclogitised during the Taconic Orogeny and separated by a massive shear zone from the overlying Fleur-de-Lys, which was metamorphosed at the same time but in the amphibolite facies. The shear zone continued either to a distal intracontinental “subduction zone” or to the main, sub-fore-arc, subduction zone beneath which the basement slipped down to depths of up to seventy kilometres at the same time as the ophiolite sheet and its previously-subcreted metamorphic sole were being obducted above. Subsequently, the eclogitised basement was returned to contact with the amphibolite-facies cover by extensional detachment eduction, possibly enhanced by subduction channel flow, which may have been caused by slab break-off and extension during subduction polarity flip. Although the basal ophiolite obduction thrust complex and the Fleur-de-Lys-basement subduction-eduction surfaces must have been initially gently-dipping to sub-horizontal, they were folded and broken by thrusts during late Taconian, late Ordovician Salinic-Mayoian, and Acadian shortening.


2021 ◽  
Author(s):  
Timothy Armitage ◽  
Robert Holdsworth ◽  
Robin Strachan ◽  
Thomas Zach ◽  
Diana Alvarez-Ruiz ◽  
...  

<p>Ductile shear zones are heterogeneous areas of strain localisation which often display variation in strain geometry and combinations of coaxial and non-coaxial deformation. One such heterogeneous shear zone is the c. 2 km thick Uyea Shear Zone (USZ) in northwest Mainland Shetland (UK), which separates variably deformed Neoarchaean orthogneisses in its footwall from Neoproterozoic metasediments in its hanging wall (Fig. a). The USZ is characterised by decimetre-scale layers of dip-slip thrusting and extension, strike-slip sinistral and dextral shear senses and interleaved ultramylonitic coaxially deformed horizons. Within the zones of transition between shear sense layers, mineral lineations swing from foliation down-dip to foliation-parallel in kinematically compatible, anticlockwise/clockwise-rotations on a local and regional scale (Fig. b). Rb-Sr dating of white mica grains via laser ablation indicates a c. 440-425 Ma Caledonian age for dip-slip and strike-slip layers and an 800 Ma Neoproterozoic age for coaxial layers. Quartz opening angles and microstructures suggest an upper-greenschist to lower-amphibolite facies temperature for deformation. We propose that a Neoproterozoic, coaxial event is overprinted by Caledonian sinistral transpression under upper greenschist/lower amphibolite facies conditions. Interleaved kinematics and mineral lineation swings are attributed to result from differential flow rates resulting in vertical and lateral extrusion and indicate regional-scale sinistral transpression during the Caledonian orogeny in NW Shetland. This study highlights the importance of linking geochronology to microstructures in a poly-deformed terrane and is a rare example of a highly heterogeneous shear zone in which both vertical and lateral extrusion occurred during transpression.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.0cf6ef44e5ff57820599061/sdaolpUECMynit/12UGE&app=m&a=0&c=d96bb6db75eed0739f2a6ee90c9ad8fd&ct=x&pn=gepj.elif&d=1" alt=""></p>


2006 ◽  
Vol 11 ◽  
pp. 179-184 ◽  
Author(s):  
John A. Korstgård ◽  
Bo Møller Stensgaard ◽  
Thorkild M. Rasmussen

Within the southern Nagssugtoqidian orogen in West Greenland metamorphic terrains of both Archaean and Palaeoproterozoic ages occur with metamorphic grade varying from low amphibolite facies to granulite facies. The determination of the relative ages of the different metamorphic terrains is greatly aided by the intrusion of the 2 Ga Kangâmiut dyke swarm along a NNE trend. In Archaean areas dykes cross-cut gneiss structures, and the host gneisses are in amphibolite to granulite facies. Along Itilleq strong shearing in an E–W-oriented zone caused retrogression of surrounding gneisses to low amphibolite facies. Within this Itivdleq shear zone Kangâmiut dykes follow the E–W shear fabrics giving the impression that dykes were reoriented by the shearing. However, the dykes remain largely undeformed and unmetamorphosed, indicating that the shear zone was established prior to dyke emplacement and that the orientation of the dykes here was governed by the shear fabric. Metamorphism and deformation north of Itilleq involve both dykes and host gneisses, and the metamorphic grade is amphibolite facies increasing to granulite facies at the northern boundary of the southern Nagssugtoqidian orogen. Here a zone of strong deformation, the Ikertôq thrust zone, coincides roughly with the amphibolite–granulite facies transition. Total magnetic field intensity anomalies from aeromagnetic data coincide spectacularly with metamorphic boundaries and reflect changes in content of the magnetic minerals at facies transitions. Even the nature of facies transitions is apparent. Static metamorphic boundaries are gradual whereas dynamic boundaries along deformation zones are abrupt.


2020 ◽  
Author(s):  
Adrian E. Castro ◽  
◽  
Chloe Bonamici ◽  
Christopher G. Daniel ◽  
Danielle Shannon Sulthaus

1992 ◽  
Vol 13 (1) ◽  
pp. 1-4 ◽  
Author(s):  
B. J. Bluck ◽  
W. Gibbons ◽  
J. K. Ingham

AbstractThe Precambrian and Lower Palaeozoic foundations of the British Isles may be viewed as a series of suspect terranes whose exposed boundaries are prominent fault systems of various kinds, each with an unproven amount of displacement. There are indications that they accreted to their present configuration between late Precambrian and Carboniferous times. From north to south they are as follows.In northwest Scotland the Hebridean terrane (Laurentian craton in the foreland of the Caledonian Orogen) comprises an Archaean and Lower Proterozoic gneissose basement (Lewisian) overlain by an undeformed cover of Upper Proterozoic red beds and Cambrian to early mid Ordovician shallow marine sediments. The terrane is cut by the Outer Isles Thrust, a rejuvenated Proterozoic structure, and is bounded to the southeast by the Moine Thrust zone, within the hanging wall of which lies a Proterozoic metamorphic complex (Moine Supergroup) which constitutes the Northern Highlands terrane. The Moine Thrust zone represents an essentially orthogonal closure of perhaps 100 km which took place during Ordovician-Silurian times (Elliott & Johnson 1980). The Northern Highlands terrane records both Precambrian and late Ordovician to Silurian tectonometamorphic events (Dewey & Pankhurst 1970) and linkage with the Hebridean terrane is provided by slices of reworked Lewisian basement within the Moine Supergroup (Watson 1983).To the southwest of the Great Glen-Walls Boundary Fault system lies the Central Highlands (Grampian) terrane, an area dominated by the late Proterozoic Dalradian Supergroup which is underlain by a gneissic complex (Central Highland Granulites) that has been variously interpreted as either older


2018 ◽  
Vol 55 (9) ◽  
pp. 1063-1078 ◽  
Author(s):  
Michelle J. Markley ◽  
Steven R. Dunn ◽  
Michael J. Jercinovic ◽  
William H. Peck ◽  
Michael L. Williams

The Central Metasedimentary Belt boundary zone (CMBbz) is a crustal-scale shear zone that juxtaposes the Central Gneiss Belt and the Central Metasedimentary Belt of the Grenville Province. Geochronological work on the timing of deformation and metamorphism in the CMBbz is ambiguous, and the questions that motivate our study are: how many episodes of shear zone activity did the CMBbz experience, and what is the tectonic significance of each episode? We present electron microprobe data from monazite (the U–Th–Pb chemical method) to directly date deformation and metamorphism recorded in five garnet–biotite gneiss samples collected from three localities of the CMBbz of Ontario (West Guilford, Fishtail Lake, and Killaloe). All three localities yield youngest monazite dates ca. 1045 Ma; most of the monazite domains that yield these dates are high-Y rims. In comparison with this common late Ottawan history, the earlier history of the three CMBbz localities is less clearly shared. The West Guilford samples have monazite grain cores that show older high-Y domains and younger low-Y domains; these cores yield a prograde early Ottawan (1100–1075 Ma) history. The Killaloe samples yield a well-defined prograde, pre- to early Shawinigan history (i.e., 1220–1160 Ma) in addition to some evidence for a second early Ottawan event. In other words, the answers to our research questions are: three events; a Shawinigan event possibly associated with crustal thickening, an Ottawan event possibly associated with another round of crustal thickening, and a late Ottawan event that resists simple interpretation in terms of metamorphic history but that coincides chronologically with crustal thinning at the base of an orogenic lid.


2007 ◽  
Vol 79 (3) ◽  
pp. 441-455 ◽  
Author(s):  
Cláudia R. Passarelli ◽  
Miguel A.S. Basei ◽  
Hélcio J. Prazeres-Filho ◽  
Oswaldo Siga-Jr. ◽  
Gergely A.J. Szabó ◽  
...  

The Juréia Massif, southeastern São Paulo State (Brazil), is part of the Registro Domain, limited to the north by the Cubatão-Itariri Shear System and to the south by the Serrinha Shear Zone. Mostly composed of migmatitic granitegneiss rocks, represents a Paleoproterozoic terrane (1.9-2.2 Ga) strongly deformed during the Neoproterozoic (750-580 Ma). The present tectonic scenario was established at the end of the Neoproterozoic, as a result of collages associated with the formation of Western Gondwana. The Ponta da Juréia, our study area within the Juréia Massif, is constituted by paragneisses (garnet-muscovite-biotite gneisses). The monazite U-Pb age of 750 Ma is related to a main regional metamorphic event that reached the high amphibolite facies, recorded in rocks from the Itatins Complex and Cachoeira Sequence as well, which also belongs to the Registro Domain. The paragneissic rocks of this study are affected by the E-W-trending Serrinha Shear Zone, registering a predominantly dextral movement. Biotite K-Ar ages of 482 ± 12 Ma may represent later movements and reflect the younger ages of reactivation of the major lineaments and juxtaposition of the tectonic blocks involved.


2006 ◽  
Vol 43 (2) ◽  
pp. 213-244 ◽  
Author(s):  
P Glombick ◽  
R I Thompson ◽  
P Erdmer ◽  
L Heaman ◽  
R M Friedman ◽  
...  

The Aberdeen gneiss complex is composed of complexly deformed migmatitic orthogneiss and paragneiss situated within the core of the Vernon antiform, a structure defined by a series of subparallel reflectors visible at upper to middle crustal depths (6–18 km) in seismic reflection data from the Vernon area of the Shuswap metamorphic complex. The Vernon antiform and the Aberdeen gneiss complex lie within the footwall of the gently west dipping (top to the west) Kalamalka Lake shear zone. Migmatitic gneiss exposed within the antiform records evidence (recorded as age domains in complexly zoned zircon grains) of three metamorphic events, occurring at 155–150, 90, and 66–51 Ma. The timing of magmatic events within the antiform includes emplacement of diorite at ~232 Ma, tonalite at ~151 Ma, granodiorite at 102 Ma, and monzonite at 52 Ma. Middle to Late Jurassic metamorphism resulted in widespread migmatization. Early Tertiary metamorphism (66–51 Ma) was coeval with the emplacement of granitic rocks and exhumation typical of other areas of the Shuswap metamorphic complex. Highly deformed orthogneiss situated within the hanging wall of the Kalamalka Lake shear zone, comprising the superstructure, was emplaced at ~171 Ma. Ductile deformation had ceased by 162 Ma. The complex metamorphic and magmatic evolution of the Vernon antiform, which is similar to other areas of the southern Canadian Cordillera including the Nicola horst, Mount Lytton – Eagle plutonic complex, Cariboo Mountains, and Mica Creek area, may reflect episodic tectonic activity at the plate margin.


Sign in / Sign up

Export Citation Format

Share Document