scholarly journals Behaviour of the ocean DMS(P) pools in the Sargasso Sea viewed in a coupled physical-biogeochemical ocean model

2004 ◽  
Vol 61 (5) ◽  
pp. 788-803 ◽  
Author(s):  
Yvonnick Le Clainche ◽  
Maurice Levasseur ◽  
Alain Vézina ◽  
John WH Dacey ◽  
François J Saucier

The dimethylsulfide (DMS) production model NODEM (Northern Oceans DMS Emission Model) was coupled with the water column ocean model GOTM (General Ocean Turbulence Model) that includes a two-equation k–ε turbulence scheme. This coupled physical-biogeochemical ocean model represents a significant improvement over the previous uncoupled version of NODEM that was driven by a diagnostic vertical mixing scheme. Using the same set of biogeochemical parameters, the coupled model is used to simulate the annual cycles of 1992 and 1993 at Hydrostation S in the Sargasso Sea. The better reproduction of the turbulent mixing environment corrects some deficiencies in nitrogen cycling, especially in the seasonal evolution of the nutrient concentrations. Hence, the coupled model captures the late-winter chlorophyll- and DMS(P)-rich blooms. It is also more adept at reproducing the vertical distribution of chlorophyll and DMS(P) in summer. Moreover, the DMS pool becomes less dependent on parameters controlling the nitrogen cycle and relatively more sensitive to parameters related to the sulfur cycle. Finally, the coupled model reproduces some of the observed differences in DMS(P) pools between 1992 and 1993, the latter being an independent data set not used in calibrating the initial version of NODEM.

2015 ◽  
Vol 8 (7) ◽  
pp. 2221-2230 ◽  
Author(s):  
J. G. L. Rae ◽  
H. T. Hewitt ◽  
A. B. Keen ◽  
J. K. Ridley ◽  
A. E. West ◽  
...  

Abstract. The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.


2020 ◽  
Vol 39 (11) ◽  
pp. 52-68
Author(s):  
Qian Yang ◽  
Hailong Liu ◽  
Pengfei Lin ◽  
Yiwen Li

1998 ◽  
Vol 120 (2) ◽  
pp. 77-84 ◽  
Author(s):  
I. V. Polyakov ◽  
I. Yu. Kulakov ◽  
S. A. Kolesov ◽  
N. Eu. Dmitriev ◽  
R. S. Pritchard ◽  
...  

A fully prognostic coupled ice-ocean model is described. The ice model is based on the elastic-plastic constitutive law with ice mass and compactness described by distribution functions. The ice thermodynamics model is applied individually to each ice thickness category. Advection of the ice partial mass and concentrations is parameterized by a fourth-order algorithm that conserves monotonicity of the solution. The ocean is described as a three-dimensional time-dependent baroclinic model with free surface. The coupled model is applied to establish the Arctic Ocean seasonal climatology using fully prognostic models for ice and ocean. Results reflect the importance of the ice melting/freezing in the formation of the thermohaline structure of the upper ocean layer.


2009 ◽  
Vol 22 (10) ◽  
pp. 2541-2556 ◽  
Author(s):  
Malcolm J. Roberts ◽  
A. Clayton ◽  
M.-E. Demory ◽  
J. Donners ◽  
P. L. Vidale ◽  
...  

Abstract Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.


2017 ◽  
Author(s):  
Ralph Timmermann ◽  
Sebastian Goeller

Abstract. A Regional Antarctic and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner-Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in-situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase of ice-shelf basal melt rates.


2017 ◽  
Author(s):  
Jaromir Jakacki ◽  
Sebastian Meler

Abstract. A three dimensional, regional coupled ice-ocean model based on the open-source Community Earth System Model has been developed and implemented for the Baltic Sea. The model consists of 66 vertical levels and has a horizontal resolution of approx. 2.3 km. The paper focuses on sea ice component results but the main changes have been introduced in the ocean part of the coupled model. The hydrodynamic part, being one of the most important components, has been also presented and validated. The ice model results were validated against the radar and satellite data, and the method of validation based on probability was introduced. In the last two decades satellite and model results show an increase in the ice extent over the whole Baltic Sea, which is an evidence of a negative trend in air temperature in recent decades and increasing of winter discharge from the catchment area.


2016 ◽  
Author(s):  
Stephen M. Griffies ◽  
Gokhan Danabasoglu ◽  
Paul J. Durack ◽  
Alistair J. Adcroft ◽  
V. Balaji ◽  
...  

Abstract. The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.


2005 ◽  
Vol 2 (4) ◽  
pp. 417-435 ◽  
Author(s):  
A. Henry-Edwards ◽  
M. Tomczak

Abstract. A new water mass analysis technique is used to analyse the BATS oceanographic data set in the Sargasso Sea of 1988-1998 for changes in Labrador Sea Water (LSW) properties. The technique is based on a sequential quadratic programming method and requires careful definition of constraints to produce reliable results. Variations in LSW temperature and salinity observed in the Labrador Sea are used to define the constraints. It is shown that to minimize the residuals while matching the observed temperature and salinity changes in the source region the nitrate concentration in the Labrador Sea has to be allowed to vary as well. It is concluded that during the period of investigation nitrate underwent significant variations in the Labrador Sea.


2020 ◽  
Vol 17 (20) ◽  
pp. 5097-5127 ◽  
Author(s):  
Onur Kerimoglu ◽  
Yoana G. Voynova ◽  
Fatemeh Chegini ◽  
Holger Brix ◽  
Ulrich Callies ◽  
...  

Abstract. The German Bight was exposed to record high riverine discharges in June 2013, as a result of flooding of the Elbe and Weser rivers. Several anomalous observations suggested that the hydrodynamical and biogeochemical states of the system were impacted by this event. In this study, we developed a biogeochemical model and coupled it with a previously introduced high-resolution hydrodynamical model of the southern North Sea in order to better characterize these impacts and gain insight into the underlying processes. Performance of the model was assessed using an extensive set of in situ measurements for the period 2011–2014. We first improved the realism of the hydrodynamic model with regard to the representation of cross-shore gradients, mainly through inclusion of flow-dependent horizontal mixing. Among other characteristic features of the system, the coupled model system can reproduce the low salinities, high nutrient concentrations and low oxygen concentrations in the bottom layers observed within the German Bight following the flood event. Through a scenario analysis, we examined the sensitivity of the patterns observed during July 2013 to the hydrological and meteorological forcing in isolation. Within the region of freshwater influence (ROFI) of the Elbe–Weser rivers, the flood event clearly dominated the changes in salinity and nutrient concentrations, as expected. However, our findings point to the relevance of the peculiarities in the meteorological conditions in 2013 as well: a combination of low wind speeds, warm air temperatures and cold bottom-water temperatures resulted in a strong thermal stratification in the outer regions and limited vertical nutrient transport to the surface layers. Within the central region, the thermal and haline dynamics interactively resulted in an intense density stratification. This intense stratification, in turn, led to enhanced primary production within the central region enriched by nutrients due to the flood but led to reduction within the nutrient-limited outer region, and it caused a widespread oxygen depletion in bottom waters. Our results further point to the enhancement of the current velocities at the surface as a result of haline stratification and to intensification of the thermohaline estuarine-like circulation in the Wadden Sea, both driven by the flood event.


2017 ◽  
Author(s):  
Heather A. Bouman ◽  
Trevor Platt ◽  
Martina Doblin ◽  
Francisco G. Figueiras ◽  
Kristinn Gudmudsson ◽  
...  

Abstract. The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis-irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E Database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models (satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally-high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological dataset that is unprecedented in number of observations and in spatial coverage. The database would be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017).


Sign in / Sign up

Export Citation Format

Share Document