Abundance of Oil Sardine (Sardinella longiceps) and Upwelling on the Southwest Coast of India

1990 ◽  
Vol 47 (12) ◽  
pp. 2407-2419 ◽  
Author(s):  
Alan R. Longhurst ◽  
Warren S. Wooster

The abundance of oil sardine (Sardinella longiceps) on the Malabar coast is highly variable on the decadal scale. During this century there have been several periods of relatively high abundance, and several major population crashes. O-group recruitment to the fishery begins towards the end of the summer monsoon, and its success is statistically related to sea level at Cochin just prior to onset of the monsoon. At this time, sea level indicates remote forcing of upwelling, rather than the wind-driven upwelling that occurs during the monsoon. Unusually early remote-forcing appears to inhibit subsequent recruitment, perhaps through exclusion of spawning fish from the neritic zone by oxygen-deficient upwelled water.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael E. Weber ◽  
Nicholas R. Golledge ◽  
Chris J. Fogwill ◽  
Chris S. M. Turney ◽  
Zoë A. Thomas

AbstractEmerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.


2012 ◽  
Vol 42 (4) ◽  
pp. 602-627 ◽  
Author(s):  
Laurie L. Trenary ◽  
Weiqing Han

Abstract The relative importance of local versus remote forcing on intraseasonal-to-interannual sea level and thermocline variability of the tropical south Indian Ocean (SIO) is systematically examined by performing a suite of controlled experiments using an ocean general circulation model and a linear ocean model. Particular emphasis is placed on the thermocline ridge of the Indian Ocean (TRIO; 5°–12°S, 50°–80°E). On interannual and seasonal time scales, sea level and thermocline variability within the TRIO region is primarily forced by winds over the Indian Ocean. Interannual variability is largely caused by westward propagating Rossby waves forced by Ekman pumping velocities east of the region. Seasonally, thermocline variability over the TRIO region is induced by a combination of local Ekman pumping and Rossby waves generated by winds from the east. Adjustment of the tropical SIO at both time scales generally follows linear theory and is captured by the first two baroclinic modes. Remote forcing from the Pacific via the oceanic bridge has significant influence on seasonal and interannual thermocline variability in the east basin of the SIO and weak impact on the TRIO region. On intraseasonal time scales, strong sea level and thermocline variability is found in the southeast tropical Indian Ocean, and it primarily arises from oceanic instabilities. In the TRIO region, intraseasonal sea level is relatively weak and results from Indian Ocean wind forcing. Forcing over the Pacific is the major cause for interannual variability of the Indonesian Throughflow (ITF) transport, whereas forcing over the Indian Ocean plays a larger role in determining seasonal and intraseasonal ITF variability.


2019 ◽  
Vol 6 (3) ◽  
pp. 505-514 ◽  
Author(s):  
Honglin He ◽  
Shaoqiang Wang ◽  
Li Zhang ◽  
Junbang Wang ◽  
Xiaoli Ren ◽  
...  

AbstractThe carbon budgets in terrestrial ecosystems in China are strongly coupled with climate changes. Over the past decade, China has experienced dramatic climate changes characterized by enhanced summer monsoon and decelerated warming. However, the changes in the trends of terrestrial net ecosystem production (NEP) in China under climate changes are not well documented. Here, we used three ecosystem models to simulate the spatiotemporal variations in China's NEP during 1982–2010 and quantify the contribution of the strengthened summer monsoon and warming hiatus to the NEP variations in four distinct climatic regions of the country. Our results revealed a decadal-scale shift in NEP from a downtrend of –5.95 Tg C/yr2 (reduced sink) during 1982–2000 to an uptrend of 14.22 Tg C/yr2 (enhanced sink) during 2000–10. This shift was essentially induced by the strengthened summer monsoon, which stimulated carbon uptake, and the warming hiatus, which lessened the decrease in the NEP trend. Compared to the contribution of 56.3% by the climate effect, atmospheric CO2 concentration and nitrogen deposition had relatively small contributions (8.6 and 11.3%, respectively) to the shift. In conclusion, within the context of the global-warming hiatus, the strengthening of the summer monsoon is a critical climate factor that enhances carbon uptake in China due to the asymmetric response of photosynthesis and respiration. Our study not only revealed the shift in ecosystem carbon sequestration in China in recent decades, but also provides some insight for understanding ecosystem carbon dynamics in other monsoonal areas.


2020 ◽  
Author(s):  
Sara Rubinetti ◽  
Carla Taricco ◽  
Davide Zanchettin ◽  
Enrico Arnone ◽  
Angelo Rubino

<p>The city of Venice (Northern Italy), together with its lagoon, is a historic, cultural and artistic heritage of inestimable value. One of its peculiarities consists in the recurrent storm surge phenomena, referred to as <em>acqua alta</em>. Sea level rise and local subsidence made their frequency to increase dramatically with respect to the past, causing severe damages to the lagoon and in particular to the city centre, as during the exceptional high tide verified on November 12, 2019.<br>Here we show the analysis of the historical time series of tidal maxima and minima recorded in the Venetian lagoon, covering the period 1872-2018. It is the longest and most complete historical series of the Venetian area and one of the longest records of the entire Mediterranean region. During this period, the relative sea level height has increased of about 30 cm with respect to the reference level, while the average number of <em>acqua alta</em> events – evaluated over a 40-year time interval - has passed from about 4 to 70 per year. These events usually occur during the fall season (from October to December), even if a not negligible number has been also recorded during winter. Therefore, we analyse the October-March average annual time series with advanced spectral analysis methods, like Monte Carlo Singular Spectrum Analysis (MC-SSA), to extract and reconstruct the significant variability modes characterizing the record. They are the increasing long-term trend and components with multidecadal, decadal and interannual periods. The trend results from the superposition on the global eustacy of the local subsidence affecting the Venetian lagoon, which is due to both natural causes and human activities. We also discuss the possible linkage of the other significant spectral components to large scale climatic patterns. In particular, the decadal-scale oscillation is one of the most important variability modes affecting Northern Italian hydrology.<br>Finally, we apply simple statistical methods (autoregressive models and feed-forward neural networks) to forecast the long-term evolution of sea level over the next ten years. In this contribution, we illustrate results from this state of the art two-fold statistical prediction system that provides robust predictions of sea level in the Venetian lagoon for the next decade and discuss them in the light of current longer-term projections of future sea level rise. Finally, we will test the predictive skill of the applied methods using tidal measurements recorded during 2019, to verify if our predictions are able to describe tidal variability characterizing the current year.       </p>


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
K. J. Jayalakshmi ◽  
P. Jasmine ◽  
K. R. Muraleedharan ◽  
M. P. Prabhakaran ◽  
H. Habeebrehman ◽  
...  

The influence of environmental parameters on the spawning aggregation ofEuphausia sibogaewas investigated along the southwest coast of India during the peak phase of summer monsoon 2005. The prevailing ecological conditions between the aggregation period (peak phase) and non-aggregation period (early phase) were also compared. The aggregation was observed at station 1 (8∘N;76.5∘E, 480 ind⋅m-3) and 6 (10∘N;75.5∘E, 839 ind.m-3) during the peak phase of the summer monsoon. Eggs (14769 eggs m-3) and different developmental stages were observed in higher abundance at station 6. The physicochemical conditions indicated that the aggregation coincided with the upwelling. The nutrient enrichment due to the upwelling triggered phytoplankton blooms, and this appeared to provide a conducive environment for spawning and development ofE. sibogae.


2014 ◽  
Vol 27 (13) ◽  
pp. 5163-5173 ◽  
Author(s):  
Takeshi Watanabe ◽  
Koji Yamazaki

The variation of the summer monsoon onset over South Asia was investigated by using long-term data of the onset over Kerala, India, during the 64-yr period from 1948 to 2011. It was found that the onset over Kerala shows variation on a multidecadal scale. In early-onset years, the sea surface temperature (SST) anomaly over the northern Pacific Ocean was very similar to the negative Pacific decadal oscillation (PDO). The stationary wave train related to the negative PDO reaches into central Asia and generates a warm anomaly, thereby intensifying the land–sea thermal contrast, which promotes summer monsoon onset over South and Southeast Asia. The correlation between the onset date over Kerala and the PDO has strengthened since 1976. Analysis of zonal wind in the upper-level troposphere for the period 1958–2002 indicates that the change in the correlation is related to the change in the wave train path. The wave train propagating from the northern Pacific Ocean to western Russia could propagate eastward more easily in 1976–2002 than in 1958–75.


2012 ◽  
Vol 1 (33) ◽  
pp. 31
Author(s):  
David Wainwright ◽  
David Callaghan ◽  
Ruben Jongejan ◽  
Roshanka Ranasinghe ◽  
Peter Cowell

It is well recognised that sea level change over the coming century will have an extraordinary economic impact on coastal communities. To overcome the uncertainty that still surrounds the mechanics of shoreline recession and stochastic forcing, landuse planning and management decisions will require a robust and quantitative risk-based approach. A new approach is presented, which has been evaluated using field measurements and assessed in economic terms. The paper discusses a framework for coastal risk analysis which combines four main components 1) the effects of non-stationary climate, including decade scale variability and anthropogenic change; 2) a full probabilistic assessment of incident wave and surge conditions; 3) determination of storm erosion extents; and 4) the economic impact of combined coastal erosion and recession. The framework is illustrated in Figure 1. The operation of this framework has been demonstrated, building upon previous work (Callaghan et al., 2008; Jongejan et al., 2011; Ranasinghe et al., 2011). The first three components relate to physical hazards. Using stochastic simulation, we quantify the ‘likelihood’ side of risk. That likelihood is typically represented by lines indicating a projected extreme landward shoreline condition and an associated quantitative probability. For the first time, the effects of non-stationary climate (e.g. sea level rise) have been included. This can be extended to include decadal scale climate variation effects such as beach rotation. The fourth component requires the determination of values associated with land threatened by coastal erosion during the time frame being considered. We assign a spatially varying value density relationship. The exceedance probability of erosion is combined with the value density to calculate the expected value of damage at a given point in time. In a non-stationary climate scenario, the exceedance probabilities change with time, and this is also considered. Given a known rate of return on investment, the differentials in the rates of return (between coastal and inland property investments) are subsequently used to determine the efficient position of the setback line. The results are presented within a GIS framework to effectively feed into the coastal land use planning process. We demonstrate the framework by applying it to using real data (both physical and economic) for our subject site, Narrabeen Beach in Sydney.


The Holocene ◽  
2018 ◽  
Vol 28 (10) ◽  
pp. 1588-1597 ◽  
Author(s):  
Stefano Furlani ◽  
Fabrizio Antonioli ◽  
Timmy Gambin ◽  
Sara Biolchi ◽  
Saviour Formosa ◽  
...  

Submerged caves represent potential archives of speleothems with continental and marine biogenic layers. In turn, these can be used to reconstruct relative sea-level changes. This study presents new data on the tectonic behaviour of the island of Malta during the Holocene. These data were obtained from a speleothem sampled, during an underwater survey, at a depth of −14.5 m, inside a recently discovered submerged cave. Since the cave was mainly formed in a subaerial karst environment, the presence of a speleothem with serpulids growing on its continental layers permitted the reconstruction of the chronology for drowning of the cave. The radiocarbon dates obtained from the penultimate and last continental layers of the speleothem, before a serpulid encrustation, were compared with synthetic aperture radar (SAR) and global positioning system (GPS) data, together with published sedimentological and archaeological data. The radiocarbon analyses provided an average age of 7.6 ka BP that perfectly aligns with the Lambeck’s model of Holocene sea level. Morevoer, long-term data agree with published archeological and sedimentological data as well as with SAR interpherometric and GPS trends on a decadal scale. We conclude that the Maltese islands were tectonically stable during the Holocene, and this tectonic behaviour still persists nowadays. On the contrary, new informations on older deposits, such as MIS5e (Maritime Isotope Stage, corresponding to 125 ka ago) were not found in the study area, confirming the lack of older Quaternary marine deposits in these islands.


MAUSAM ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 87-94
Author(s):  
O. P. SINGH

The present study aims at gaining more insight into the evolution of warm pool and associated sea level dome in the southeastern Arabian Sea before the summer monsoon onset.  The results show that the Sea Surface Temperature (SST) maximum in the warm pool region is found during April close to the southwest coast of India.  The Sea Surface Height (SSH) maximum over the same region is observed during December. The collapse of sea level dome begins well in advance during the pre-monsoon whereas the warm pool collapses after the onset of summer monsoon during June.  Therefore, there is a lag of about three to four months between the collapses of the sea level high and the warm pool.  Most interesting aspect is the dramatic increase of SST from September and SSH from October which is continued throughout the post monsoon season (October - December). Therefore, both the collapse and evolution of warm pool are dramatic events before and after the summer monsoon.                    There are considerable variations in the intensity of warm pool and the height of sea level dome on interannual scale.  The variation during El-Nino Southern Oscillation (ENSO) epoch of 1987-88 has revealed many interesting features.  During El-Nino year 1987 the warm pool intensity reached its peak in June whereas during La Nina year 1988 the warm pool attained its maximum intensity much earlier, i.e., in April. 


Sign in / Sign up

Export Citation Format

Share Document