Protective effect of resveratrol on formation of membrane protein carbonyls and lipid peroxidation in erythrocytes subjected to oxidative stress

2009 ◽  
Vol 34 (6) ◽  
pp. 1093-1097 ◽  
Author(s):  
Kanti Bhooshan Pandey ◽  
Syed Ibrahim Rizvi

Many of the biological actions of resveratrol have been attributed to its antioxidant properties. In this work, we subjected human erythrocytes to in vitro oxidative stress by incubating them with tert-butylhydroperoxide (t-BHP). This caused a significant increase in the malondialdehyde (MDA) level and the protein carbonyl group content above the basal values. The presence of trans-resveratrol at micromolar concentrations in the incubation medium protected the erythrocytes from t-BHP-induced oxidative stress, as evidenced by the decrease in the MDA level and the protein carbonyl group content. The effect of resveratrol was concentration and time-dependent. Our findings help to explain some of the beneficial effects of resveratrol.

Author(s):  
Pullaiah P. ◽  
Suchitra M. M. ◽  
Siddhartha Kumar B.

Background: Oxidative stress (OS) has an important role in the pathogenesis and progression of rheumatoid arthritis (RA). OS causes protein modification, thereby impairing the biological functions of the protein. This study was conducted to assess the oxidatively modified protein as protein carbonyl content and the antioxidant status as protein thiols, and to study the association between protein carbonyls and protein thiols in RA.Methods: Newly diagnosed RA patients who were not taking any disease modifying anti-rheumatic drugs were included into the study group (n=45) along with age and sex matched healthy controls (n=45). Serum protein carbonyl content and protein thiols were estimated.Results: Elevated protein carbonyl content and decreased protein thiol levels (p<0.001) were observed in RA. A significant negative correlation was observed between protein carbonyl content and protein thiol levels (p<0.001).Conclusions: Oxidative stress in RA is evidenced by enhanced protein oxidation and decreased antioxidant protein thiol levels. Decreased protein thiols may also reflect protein modifications leading to compromise in the antioxidant properties. This oxidant and antioxidant imbalance needs to be addressed by therapeutic interventions to prevent disease progression.


Author(s):  
Mona Pourjafar ◽  
Sara Malih ◽  
Akram Ranjbar

: In recent years, the applications of nanoparticles have received a great attention due to their industrial and biomedical applications, while their beneficial effects suffer from controversial results at clinical stages. In the current study, cytotoxicity of cerium oxide (CeNP) nanoparticles (100 nm) were evaluated using mitochondria derived from wistar rat's liver. Isolated mitochondria from rat’s liver were divided into 7 groups including group 1 as control and group 2 to 7 as treatment group with different doses of CeNP (5, 10, 50, 100, 250 and 500mg/ml, respectively), for 24,48 and 72 hours. After exposure, oxidative stress biomarkers such as total ‎antioxidant capacity (TAC), lipid peroxidation (LPO), total thiol groups (TTG), catalase activity (CAT) and mitochondrial viability, were determined in isolated rat liver mitochondria. Results have shown that CeNPs increase TAC, TTG, CAT, LPO and viability of mitochondria in various exposure times and confirm antioxidant properties of CeNPs in mithocondria while mitochondria is a main source for the generation of reactive oxygen species (ROS).


2015 ◽  
Vol 35 (6) ◽  
pp. 635-643 ◽  
Author(s):  
A Kumral ◽  
M Giriş ◽  
M Soluk-Tekkeşin ◽  
V Olgaç ◽  
S Doğru-Abbasoğlu ◽  
...  

Objective: Oxidative stress plays an important role in doxorubicin (DOX)-induced toxicity. Carnosine (CAR) is a dipeptide with antioxidant properties. The aim of this study was to evaluate the decreasing or preventive effect of CAR alone or combination with vitamin E (CAR + Vit E) on DOX-induced toxicity in heart, liver, and brain of rats. Methods: Rats were treated with CAR (250 mg kg−1 day−1; intraperitoneally (i.p.)) or CAR + Vit E (equals 200 mg kg−1 α-tocopherol; once every 3 days; intramuscularly) for 12 consecutive days. On the 8th day of treatment, rats were injected with a single dose of DOX (30 mg kg−1, i.p.). Serum cardiac troponin I (cTnI), urea, and creatinine levels; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities; and oxidative stress parameters in tissues were measured. We also determined thiobarbituric acid reactive substances, diene conjugate, protein carbonyl (PC), and glutathione levels and antioxidant enzyme activities. Results: DOX resulted in increased serum cTnI, ALT, AST, urea, and creatinine levels and increased lipid peroxide and PC levels in tissues. CAR or CAR + Vit E treatments led to decreases in serum cTnI levels and ALT and AST activities. These treatments reduced prooxidant status and ameloriated histopathologic findings in the examined tissues. Conclusion: Our results may indicate that CAR alone, especially in combination with Vit E, protect against DOX-induced toxicity in heart, liver, and kidney tissues of rats. This was evidenced by improved cardiac, hepatic, and renal markers and restoration of the prooxidant state and amelioration of histopathologic changes.


2021 ◽  
Vol 22 (11) ◽  
pp. 5885
Author(s):  
Dmitry Ivanov ◽  
Gianluigi Mazzoccoli ◽  
George Anderson ◽  
Natalia Linkova ◽  
Anastasiia Dyatlova ◽  
...  

Embryogenesis is a complex multi-stage process regulated by various signaling molecules including pineal and extrapineal melatonin (MT). Extrapineal MT is found in the placenta and ovaries, where it carries out local hormonal regulation. MT is necessary for normal development of oocytes, fertilization and subsequent development of human, animal and avian embryos. This review discusses the role of MT as a regulator of preimplantation development of the embryo and its implantation into endometrial tissue, followed by histo-, morpho- and organogenesis. MT possesses pronounced antioxidant properties and helps to protect the embryo from oxidative stress by regulating the expression of the NFE2L2, SOD1, and GPX1 genes. MT activates the expression of the ErbB1, ErbB4, GJA1, POU5F1, and Nanog genes which are necessary for embryo implantation and blastocyst growth. MT induces the expression of vascular endothelial growth factor (VEGF) and its type 1 receptor (VEGF-R1) in the ovaries, activating angiogenesis. Given the increased difficulties in successful fertilization and embryogenesis with age, it is of note that MT slows down ovarian aging by increasing the transcription of sirtuins. MT administration to patients suffering from infertility demonstrates an increase in the effectiveness of in vitro fertilization. Thus, MT may be viewed as a key factor in embryogenesis regulation, including having utility in the management of infertility.


2006 ◽  
Vol 52 (7) ◽  
pp. 1406-1414 ◽  
Author(s):  
Ranieri Rossi ◽  
Isabella Dalle-Donne ◽  
Aldo Milzani ◽  
Daniela Giustarini

Abstract Background: Reduced glutathione (GSH) and its redox forms, glutathione disulfide (GSSG) and glutathionylated proteins (PSSG), are biomarkers of oxidative stress, but methodologic artifacts can interfere with their measurement. We evaluated the importance of correct sample handling during the preanalytical phase for GSH, GSSG, and PSSG measurement. Methods: We used human blood for in vitro experiments with oxidants [tert-butylhydroperoxide (t-BOOH), diamide, and menadione]. For in vivo experiments, we used rats in which we cannulated the jugular and femoral veins for both oxidant administration and blood collection. We measured GSH, GSSG, and PSSG with HPLC with or without sample pretreatment with N-ethylmaleimide (NEM) to prevent artifacts. We also measured malondialdehyde (MDA) with HPLC, and protein carbonyls (PCO) with spectrophotometric procedures. Results: When methodologic artifacts were prevented by pretreatment with NEM, GSSG results increased up to 3-fold over the basal concentrations, even in the presence of 5 μmol/L t-BOOH or diamide and 20 μmol/L menadione. PSSG increased by ∼50% at 20 μmol/L t-BOOH or diamide and at 50 μmol/L menadione. PCO and MDA remained unchanged. In vivo oxidation treatments elicited immediate and significant increases in GSSG and PSSG over basal values (up to 200-fold), whereas PCO and MDA showed only slight variation 120 or 180 min after treatment. Conclusions: With the use of artifact-free measurement methods, GSH, GSSG, and PSSG are potentially powerful and reliable biomarkers of oxidative stress status and can be used to evaluate whether, and to what extent, oxidative stress may be involved in various diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
L. C. Cruz ◽  
J. E. S. Batista ◽  
A. P. P. Zemolin ◽  
M. E. M. Nunes ◽  
D. B. Lippert ◽  
...  

We characterized, for the first time, the quality and identity of Brazilian Pampa biome honey and its antioxidant propertiesin vitro(FRAP, DDPH and ABTS). The potential protective effect of honey against oxidative stress induced by iron (Fe) and paraquat, (PQ) in aDrosophila melanogastermodel (in vivo) was also tested. The results indicated that all honey samples tested showed antioxidant activityin vitro. Flies treated with honey showed increased lifespan and were protected against oxidative stress induced by Fe and PQ. Despite the high concentration of sugars in honey (approximately 70–80%), our results demonstrate a hypoglycemic-like effect of honey inDrosophila. Thus, this study demonstrates the high quality of Brazilian Pampa biome honey as well as its significant antioxidant activityin vitroandin vivo, pointing to the potential use of this natural product as an alternative in the therapy of oxidative stress-associated diseases.


2005 ◽  
Vol 108 (6) ◽  
pp. 497-506 ◽  
Author(s):  
George KALOGERAKIS ◽  
Arthur M. BAKER ◽  
Steve CHRISTOV ◽  
Kevin G. ROWLEY ◽  
Karen DWYER ◽  
...  

In a cross-sectional study, oxidative stress in high vascular disease risk groups, ESRD (end-stage renal disease) and Type I diabetes, was assessed by measuring plasma protein carbonyls and comparing antioxidant capacity of HDL (high-density lipoprotein) as pertaining to PON1 (paraoxonase 1) activity and in vitro removal of LPO (lipid peroxides). ESRD subjects on haemodialysis (n=22), Type I diabetes subjects (n=20) without vascular complications and healthy subjects (n=23) were compared. Plasma protein carbonyls were higher in ESRD patients [0.16 (0.050) nmol/mg of protein; P=0.001; value is mean (SD)] relative to subjects with Type I diabetes [0.099 (0.014) nmol/mg of protein] and healthy subjects [0.093 (0.014) nmol/mg of protein]. Plasma PON1 activity, with and without correction for HDL-cholesterol, was lower in diabetes but did not differ in ESRD compared with healthy subjects. Plasma PON1 activity, without correction for HDL, did not differ between the three groups. In ESRD, plasma PON1 activity and plasma protein carbonyl concentrations were inversely related (r=−0.50, P<0.05). In an in vitro assay, LPO removal by HDL in ESRD subjects was greater than HDL from healthy subjects (P<0.01), whereas HDL from patients with Type I diabetes was less effective (P<0.01). Efficacy of LPO removal was unrelated to plasma PON1 activity, in vitro glycation or mild oxidation, but was impaired by marked oxidation and glycoxidation. Protein carbonyl levels are increased in ESRD but not in complication-free Type I diabetes. HDL antioxidant function is increased in ESRD, perhaps a compensatory response to increased oxidative stress, but is lower in Type I diabetes. HDL dysfunction is related to glycoxidation rather than glycation or PON1 activity.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.


Sign in / Sign up

Export Citation Format

Share Document