Performance of double skin-profiled composite shear walls — experiments and design equations

2004 ◽  
Vol 31 (2) ◽  
pp. 204-217 ◽  
Author(s):  
K M. Anwar Hossain ◽  
H D Wright

The novel form of composite walling system consists of two skins of profiled steel sheeting with an infill of concrete. The knowledge of the behaviour of such walling under shear loading is important to use this system as shear elements in a steel framed building. Currently design provisions for this novel form of framed shear walling do not exist. This paper presents the results of tests on one-sixth scale models of the composite wall and its components, manufactured from very thin sheeting and microconcrete. The heavily instrumented small-scale tests provided information on the load–deflection response, strength, stiffness, strain condition, sheet–concrete interaction, and failure modes. Analytical models for the shear strength and stiffness of the wall are derived. The adequacy of design equations is validated through experimental results and finite element modelling.Key words: composite wall, design equation, profiled sheeting, shear strength, shear stiffness, strain, buckling, finite element, interface, microconcrete.

2001 ◽  
Vol 28 (3) ◽  
pp. 541-544 ◽  
Author(s):  
Wael Bekheet ◽  
Yasser Hassan ◽  
AO Abd El Halim

Rutting is one of the well-recognized road surface distresses in asphalt concrete pavements that can affect the pavement service life and traffic safety. Previous studies have shown that the shear strength of asphalt concrete pavements is a fundamental property in resisting rutting. Laboratory investigation has shown that improving the shear strength of the asphalt concrete mix can reduce surface rutting by more than 30%, and the SUPERPAVE mix design method has acknowledged the importance of the shear resistance of asphalt mixes as a fundamental property in resisting deformation of the pavement. An in situ shear strength testing facility was developed at Carleton University, and a more advanced version of this facility is currently under development in cooperation with the Transportation Research Board and the Ontario Ministry of Transportation. In using this facility, a circular area of the pavement surface is forced to rotate about a normal axis by applying a torque on a circular plate bonded to the surface. The pavement shear strength is then related to the maximum torque. This problem has been solved mathematically in the literature for a linear, homogeneous, and isotropic material. However, the models for other material properties are mathematically complicated and are not applicable to all cases of material properties. Therefore, developing a model that can accurately analyze the behaviour of asphalt concrete pavements during the in situ shear test has proven pivotal. This paper presents the development of a three-dimensional finite element model that can simulate the forces applied while measuring the shear strength of the asphalt concrete pavement. A comparison between the model results and those obtained from available analytical models and field measurements proved the accuracy of the developed model.Key words: shear strength, in situ testing, finite element, asphalt, pavement, modelling.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040007
Author(s):  
Limeng Zhu ◽  
Haipeng Yan ◽  
Po-Chien Hsiao ◽  
Jianhua Zhang

An innovative composite vertical connecting structure (CVC) with capacity carrying and energy-dissipating ability is proposed in this study, which could be used in prefabricated composite shear wall structural systems to enhance the resilience and seismic performance of structural system. The CVC structure is mainly composed of three parts, including the connecting zone, the capacity bearing zone characterized by high strength and elastic deforming ability, and the energy-dissipating zone assembled by replaceable metal dampers. The low-yield strength steel and high-strength steel are used, respectively, for the metal dampers in the energy-dissipating zone and the concrete-filled high-strength steel tubes in the bearing capacity zone to enhance the energy dissipation and self-centering abilities of CVC structures. The working mechanism is analyzed and validated through finite element models built in ABAQUS. The hysteretic behavior is simulated to evaluate their performance. First, the metal dampers are designed. The theoretical and finite elemental parametric analysis are carried out. According to the simulation results, the “Z-shaped” metal dampers exhibit better energy-dissipating ability than the rectangular shape, in which the “Z-shaped” metal dampers with 45∘ show the best performance. Simultaneously, the results of the models calculated by the finite element method and theoretical analysis work very well with each other. Furthermore, seven FE models of shear walls with CVC structures are designed. Monotonic and cyclic loading simulations are conducted. The failure modes and comprehensive mechanical performance are investigated and evaluated according to their calculated force–displacement curves, skeleton curves, and ductility coefficients. The results indicate that the CVC structure delivered preferable lateral-bearing capacity and displacement ductility. Finally, according to available design standards, the lateral stiffness of CVC structures could be conventionally controlled and some practical design recommendations are discussed.


Author(s):  
Ali A. Heravi ◽  
Oliver Mosig ◽  
Ahmed Tawfik ◽  
Manfred Curbach ◽  
Viktor Mechtcherine

The ductile behavior of strain hardening cement-based composites (SHCC) under direct tensile load makes them promising solutions for applications where high energy dissipation is needed, such as earthquake, impact by a projectile, or blast. However, the superior tensile ductility of SHCC due to multiple cracking does not necessarily entail compressive and shear ductility. As an effort to characterize the behavior of SHCC under impact compressive and shear loading, relevant to the mentioned high-speed loading scenarios, the paper at hand studies the performance of a SHCC and its constituent cement-based matrices using the split-Hopkinson bar method. For compression experiments, cylindrical specimens with a length-to-diameter ratio (l/d) of 1.6 were used. The selected length of the sample led to similar failure modes under the quasi-static and impact loading conditions, which was necessary for a reliable comparison of the obtained compressive strengths. The impact experiments were performed in a split-Hopkinson pressure bar (SHPB) at a strain rate that reached 110 s-1 at the moment of failure. For shear experiments, a special adapter was developed for a split-Hopkinson tension bar (SHTB). The adapter enabled performing impact shear experiments on planar specimens using the tensile wave generated in the SHTB. Results showed a dynamic increase factor (DIF) of 2.3 and 2.0 for compressive and shear strength of SHCC, respectively. As compared to the non-reinforced constituent matrix, the absolute value of the compressive strength was lower for the SHCC. Contrarily, under shear loading, the SHCC yielded the higher shear strength than the non-reinforced matrix.


2021 ◽  
Author(s):  
Muhammad Akram

This research investigated the behaviour of a novel form of composite framed shear wall system (CFSWS) under lateral loading. The CFSWS consisted of a composite wall (made of two skins of profiled steel sheeting and an infill of concrete) connected to pinned steel or fixed concrete filled steel tube (CFST) frame. The experimental investigations on one and two-storey four CFSWS models of 1/6th scale provided information on shear load-deformation response, shear strength/stiffness, energy absorbing capacity, stress-strain characteristics and failure modes. The failure of CFSWS was associated with buckling of steel sheets and development of diagonal concrete core cracking as well as the wall-frame fastener and CFST frame joint failure. Overall, the failure was governed by wall failure rather than frame. Analytical models for the shear strength of CFSWS were developed and found to be in close agreement with experiments. This research confirmed the viability of using novel CFSWS in practical construction.


2019 ◽  
pp. 152808371987388
Author(s):  
Ennouri Triki ◽  
Chantal Gauvin

Soft elastomer-coated fabrics are widely used in engineering and protective applications. Puncture cutting by sharp-tipped objects is one of the most common failure modes of protective gloves made of coated fabrics. In order to investigate the puncture-cutting process of soft elastomer-coated fabrics, we studied the mechanisms and mechanics of pointed-blade insertion into specimens cut out from four protective gloves. Experimental and analytical analyses showed that total energy and critical puncture-cutting force calculated analytically are both able to predict the puncture-cutting resistance of soft elastomer-coated fabrics measured experimentally. Total energy is obtained from the relationship between the puncture-cutting work and the created fracture area, while critical force is calculated by two analytical models developed for soft elastomeric membranes. The components of the critical puncture-cutting force are predicted analytically and then used to calculate the compressive and shear loading stress components based on the contact surface between the pointed blade tip and material. Since there is a linear relationship between the compressive stress component and shear stress component, a modified linear strength criterion is proposed for puncture cutting of soft elastomer-coated fabrics by a pointed blade. Our stress-based criterion connects the 45° tensile strength (in the 45° direction) and biaxial strengths (in the course direction, 0°, and wale direction, 90°) to both compressive and shear loading stresses. The analytical and experimental results are consistent. This investigation can be used as a guideline to evaluate the puncture cutting of soft elastomer-coated fabrics using an energy-based criterion, critical force-based criterion, or stress-based criterion.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuminobu Ozaki ◽  
Ying Liu ◽  
Kai Ye

PurposeThe purpose of this study is to clarify both tensile and shear strength for self-drilling screws, which are manufactured from high-strength, martensitic-stainless and austenitic stainless-steel bars, and the load-bearing capacity of single overlapped screwed connections using steel sheets and self-drilling screws at elevated temperatures.Design/methodology/approachTensile/shear loading tests for the self-drilling screw were conducted to obtain basic information on the tensile and shear strengths at elevated temperatures and examine the relationships between both. Shear loading tests for the screwed connections at elevated temperatures were conducted to examine the shear strength and transition of failure modes depending on the test temperature.FindingsThe tensile and shear strengths as well as the reduction factors at the elevated temperature for each steel grade of the self-drilling screw were quantified. Furthermore, either screw shear or sheet bearing failure mode depending on the test temperature was observed for the screwed connection.Originality/valueThe transition of the failure modes for the screwed connection could be explained using the calculation formulae for the shear strengths at elevated temperatures, which were proposed in this study.


2018 ◽  
Vol 53 (9) ◽  
pp. 1197-1213 ◽  
Author(s):  
Bazle Z (Gama) Haque ◽  
Molla A Ali ◽  
Raja H Ganesh ◽  
Sandeep Tamrakar ◽  
Chian F Yen ◽  
...  

Punch shear in unidirectional composites is induced by transverse shear loading that progressively perforates the laminate within a narrow shear annulus. At lower micromechanical length scales, punch shear loading creates unique micromechanical damage mechanisms dominated by transverse fiber shear failure, fiber–matrix interphase debonding and large inelastic deformation and cracking of the matrix. A new punch shear experimental method has been developed to test unidirectional S glass/DER353 epoxy composite ribbons at sub-millimeter length scale. The experimental data consist of a statistical measurement of the continuum response (load-deformation and punch shear strength) and the characterization of micromechanical damage modes. A simplified 2D micromechanical finite element model incorporating Weibull fiber strength distribution has been developed and correlated with the experimental data. The 2D micromechanical finite element model can simulate the punch shear failure of the ribbon incorporating mixed mode fiber fracture, and fiber–matrix debonding mechanisms using zero thickness cohesive elements. Results from stochastic simulations of punch shear experiments show that an equivalent 2D micromechanical finite element model can predict the micromechanical damage mechanisms and the statistical distribution of punch shear strength of the continuum with favorable correlation with the experiments. This paper presents a combined experimental and computational approach in simulating the stochastic non-linear progressive punch shear behavior of unidirectional composites for the first time in the literature.


2020 ◽  
Vol 63 (6) ◽  
pp. 1619-1628
Author(s):  
Khoi D. Mai ◽  
William F. Cofer ◽  
Donald A. Bender

HighlightsA new finite element modeling method was developed to predict performance of steel-clad, wood-framed diaphragms.The new method overcomes limitations of previous models and accurately predicts yielding and buckling behaviors.The new method will save time and money in developing design values for steel-clad, wood-frame diaphragms.Abstract. Various finite element codes and solution techniques have been developed for steel-clad, wood-framed (SCWF) shear walls over the past few decades. Most previous finite element models for SCWF shear walls under monotonic loading were based on a static implicit solution technique. Previous researchers stated that the static implicit technique showed promise for modeling SCWF diaphragms; however, the solution technique failed to converge to equilibrium as local instabilities in the form of snap-through buckling of steel cladding occurred or geometric nonlinearities were included in the model. In this study, a nonlinear quasi-dynamic implicit finite element analysis (FEA) of SCWF shear walls subjected to monotonic loading was developed to overcome the deficiencies of the static implicit approach. Three types of elements were used, including beam elements to model wood framing, shell elements to model steel cladding, and nonlinear spring elements to model connectors. Screw connector tests were conducted to obtain the load-displacement constitutive relationships needed for finite element models. Nine types of SCWF shear walls with and without lap seam stitching were tested to validate the finite element model. The ratios of predicted to test values for ultimate shear strength averaged 0.97 with a coefficient of variation (COV) of 8.1%, and the ratios for effective shear modulus averaged 1.13 with a COV of 30%. The quasi-dynamic implicit FEA is a significant improvement over previous static implicit techniques and should be a useful tool to predict the ultimate shear strength and effective shear modulus of SCWF shear walls under monotonic loading. Keywords: Diaphragm design, Post-frame building, Steel-clad wood-frame diaphragm.


2012 ◽  
Vol 170-173 ◽  
pp. 434-438 ◽  
Author(s):  
Yin Zhang ◽  
Cai Yang Zhang ◽  
Qi Zhang ◽  
Deng Fei Zhang

Composite structure of mufti-ribbed composite walls-shear walls is composed of Multi-ribbed composite walls and shear walls which form a new kind of resisted load structure together. The paper analyzes the interaction of composite structure of mufti-ribbed composite walls-shear walls and pile-raft foundation with elastic-plastic mode of D-P. The load of superstructure is combined in the raft by substructure method, Finally,the paper obtain the distributed regularity of pile-raft foundation stress, strain by analyzing the influence of force performance which got by the large finite element software ANSYS analyzing interaction of superstructure and the pile-raft foundation-groundwork.


2012 ◽  
Vol 268-270 ◽  
pp. 279-282
Author(s):  
Piero Morelli

The results of an experimental investigation on the shear strength of structural joints are presented and discussed. Joint typologies generally employed in structural frames of industrial warehouses and intermediate floors are taken into consideration. Specimens were supplied by an industrial shelving manufacturer, in two different configurations: the first one characterized by steel pressed geometrical connectors and the second one consisting in bolted fittings to angular welded supporting plates. A specific testing device has been designed in order to transfer axial loading into shear loading applied to a couple of joints in a symmetrical testing configuration. Quasi-static loads were applied with increasingly intensity steps, until the yielding of the material or the overall structure collapse were reached. Failure modes of the tested joints are analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document