Reliability analysis for critical reaction forces of lumber members with an end notch

1996 ◽  
Vol 23 (1) ◽  
pp. 202-210 ◽  
Author(s):  
Ian Smith ◽  
Ying Hei Chui ◽  
Lin Juan Hu

The basis of new design provisions for avoidance of brittle failures in sawn lumber members with an end notch is explained. Linear elastic fracture mechanics and structural reliability concepts are combined with material property data to determine appropriate forms of equations for limiting the reaction force, when a notch is made on either the tension or compression face of a member. Following from this, the factored reaction force resistance of a member designed to the 1994 edition of the CSA Standard 086.1 "Engineering design in wood (limit states design)" depends upon the depth of the member and the geometry and size of an end notch if the notch is located on the tension face. A new property, the specified reaction force strength, which is a measure of the capability of the material to resist fracture, is taken to be independent of the timber species and stress grade of the lumber. Design variables such as duration of load and moisture service condition influence assignments of factored reaction force resistances for members end notched on the tension face. When a notch is located on the compression face of a member the resistance is simply the factored shear resistance of the residual cross section. As in previous editions of CSA Standard 086.1, notches are not permitted to have a depth greater than 0.25 times the depth of the section. Key words: lumber, fracture, structural reliability, notched beam, design criterion.

2020 ◽  
Vol 92 (6) ◽  
pp. 51-58
Author(s):  
S.A. SOLOVYEV ◽  

The article describes a method for reliability (probability of non-failure) analysis of structural elements based on p-boxes. An algorithm for constructing two p-blocks is shown. First p-box is used in the absence of information about the probability distribution shape of a random variable. Second p-box is used for a certain probability distribution function but with inaccurate (interval) function parameters. The algorithm for reliability analysis is presented on a numerical example of the reliability analysis for a flexural wooden beam by wood strength criterion. The result of the reliability analysis is an interval of the non-failure probability boundaries. Recommendations are given for narrowing the reliability boundaries which can reduce epistemic uncertainty. On the basis of the proposed approach, particular methods for reliability analysis for any structural elements can be developed. Design equations are given for a comprehensive assessment of the structural element reliability as a system taking into account all the criteria of limit states.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2011 ◽  
Author(s):  
Bessone ◽  
Petrat ◽  
Schwirtz

In the past, technological issues limited research focused on ski jump landing. Today, thanks to the development of wearable sensors, it is possible to analyze the biomechanics of athletes without interfering with their movements. The aims of this study were twofold. Firstly, the quantification of the kinetic magnitude during landing is performed using wireless force insoles while 22 athletes jumped during summer training on the hill. In the second part, the insoles were combined with inertial motion units (IMUs) to determine the possible correlation between kinematics and kinetics during landing. The maximal normal ground reaction force (GRFmax) ranged between 1.1 and 5.3 body weight per foot independently when landing using the telemark or parallel leg technique. The GRFmax and impulse were correlated with flying time (p < 0.001). The hip flexions/extensions and the knee and hip rotations of the telemark front leg correlated with GRFmax (r = 0.689, p = 0.040; r = −0.670, p = 0.048; r = 0.820, p = 0.007; respectively). The force insoles and their combination with IMUs resulted in promising setups to analyze landing biomechanics and to provide in-field feedback to the athletes, being quick to place and light, without limiting movement.


Author(s):  
Eric Brehm ◽  
Robert Hertle ◽  
Markus Wetzel

In common structural design, random variables, such as material strength or loads, are represented by fixed numbers defined in design codes. This is also referred to as deterministic design. Addressing the random character of these variables directly, the probabilistic design procedure allows the determination of the probability of exceeding a defined limit state. This probability is referred to as failure probability. From there, the structural reliability, representing the survival probability, can be determined. Structural reliability thus is a property of a structure or structural member, depending on the relevant limit states, failure modes and basic variables. This is the basis for the determination of partial safety factors which are, for sake of a simpler design, applied within deterministic design procedures. In addition to the basic variables in terms of material and loads, further basic variables representing the structural model have to be considered. These depend strongly on the experience of the design engineer and the level of detailing of the model. However, in the clear majority of cases [1] failure does not occur due to unexpectedly high or low values of loads or material strength. The most common reasons for failure are human errors in design and execution. This paper will provide practical examples of original designs affected by human error and will assess the impact on structural reliability.


2014 ◽  
Vol 27 (04) ◽  
pp. 257-262 ◽  
Author(s):  
J. Y. W. Kim ◽  
T. C. Garcia-Nolan ◽  
S. Y. Kim ◽  
K. Hayashi ◽  
P. L. Hitchens ◽  
...  

SummaryObjectives: To develop a platform that used standard size force plates for large breed dogs to capture ground reaction force data from any size dog.Methods: A walkway platform was constructed to accommodate two force plates (60 cm x 40 cm) positioned in series to a variety of smaller sizes. It was constructed from a custom wood frame with thick aluminium sheet force plate covers that prevented transfer of load to the force plate, except for rectangular windows of three different dimensions. A friction study was performed to ensure plates did not translate relative to one another during gait trials. A prospective, observational, single crossover study design was used to compare the effect of force platform configuration (full plate size [original plate], half plate size [modified plate]) on ground reaction forces using eight adult healthy Labrador Retriever dogs.Results: Slippage of the steel plate on the force plate did not occur. Peak propulsion force was the only kinetic variable statistically different between the full size and half sized platforms. There were no clinically significant differences between the full and half force platforms for the variables and dogs studied.Discussion and conclusion: The modified force platform allows the original 60 x 40 cm force plate to be adjusted effectively to a 30 x 40 cm, 20 x 40 cm and 15 x 40 cm sized plate with no clinically significant change in kinetic variables. This modification that worked for large breed dogs will potentially allow kinetic analysis of a large variety of dogs with different stride lengths.


Author(s):  
Yoshiaki Sakamoto ◽  
Hisao Izuchi ◽  
Naoko Suzuki

Reaction force of safety valves acting to the piping system is one of key factors for the piping system design around the safety valves. In case of open discharge system, it is well known that a large reaction force acts to the piping corresponding to the fluid momentum force at the atmospheric discharge. On the other hand, reaction forces for closed discharge system may be relatively small since the forces acting to the adjacent two points with flow direction change such as elbows and tees are balanced within very short period. However, large reaction forces may act as a result of unsteady flow just after the initial activation of the safety valve. API RP520 mentioned that a complex time history analysis of the piping system around the safety valves may be required to obtain the transient forces. This paper explains a method of a comprehensive dynamic simulation of piping system around safety valves taking interaction among the valve disc motion, the fluid transient for compressible flow and the piping structural dynamics into account. The simulation results have good agreement with the experimental data. The effectiveness of this method is confirmed throughout an application to actual piping system around safety valves.


2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242215
Author(s):  
A. M. van Leeuwen ◽  
J. H. van Dieën ◽  
A. Daffertshofer ◽  
S. M. Bruijn

Step-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.


1994 ◽  
Vol 116 (4) ◽  
pp. 401-407 ◽  
Author(s):  
J. Chen ◽  
Liangfeng Xu

A 2-D finite element model of the human temporomandibular joint (TMJ) has been developed to investigate the stresses and reaction forces within the joint during normal sagittal jaw closure. The mechanical parameters analyzed were maximum principal and von Mises stresses in the disk, the contact stresses on the condylar and temporal surfaces, and the condylar reactions. The model bypassed the complexity of estimating muscle forces by using measured joint motion as input. The model was evaluated by several tests. The results demonstrated that the resultant condylar reaction force was directed toward the posterior side of the eminence. The contact stresses along the condylar and temporal surfaces were not evenly distributed. Separations were found at both upper and lower boundaries. High tensile stresses were found at the upper boundaries. High tensile stresses were found at the upper boundary of the middle portion of the disk.


2007 ◽  
Vol 23 (3) ◽  
pp. 180-189 ◽  
Author(s):  
Niell G. Elvin ◽  
Alex A. Elvin ◽  
Steven P. Arnoczky

Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.


Sign in / Sign up

Export Citation Format

Share Document