scholarly journals Ground Reaction Forces and Kinematics of Ski Jump Landing Using Wearable Sensors

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2011 ◽  
Author(s):  
Bessone ◽  
Petrat ◽  
Schwirtz

In the past, technological issues limited research focused on ski jump landing. Today, thanks to the development of wearable sensors, it is possible to analyze the biomechanics of athletes without interfering with their movements. The aims of this study were twofold. Firstly, the quantification of the kinetic magnitude during landing is performed using wireless force insoles while 22 athletes jumped during summer training on the hill. In the second part, the insoles were combined with inertial motion units (IMUs) to determine the possible correlation between kinematics and kinetics during landing. The maximal normal ground reaction force (GRFmax) ranged between 1.1 and 5.3 body weight per foot independently when landing using the telemark or parallel leg technique. The GRFmax and impulse were correlated with flying time (p < 0.001). The hip flexions/extensions and the knee and hip rotations of the telemark front leg correlated with GRFmax (r = 0.689, p = 0.040; r = −0.670, p = 0.048; r = 0.820, p = 0.007; respectively). The force insoles and their combination with IMUs resulted in promising setups to analyze landing biomechanics and to provide in-field feedback to the athletes, being quick to place and light, without limiting movement.

2019 ◽  
Vol 54 (12) ◽  
pp. 1296-1303 ◽  
Author(s):  
Mohammad Karimizadeh Ardakani ◽  
Erik A. Wikstrom ◽  
Hooman Minoonejad ◽  
Reza Rajabi ◽  
Ali Sharifnezhad

Context Hopping exercises are recommended as a functional training tool to prevent lower limb injury, but their effects on lower extremity biomechanics in those with chronic ankle instability (CAI) are unclear. Objective To determine if jump-landing biomechanics change after a hop-stabilization intervention. Design Randomized controlled clinical trial. Setting Research laboratory. Patients or Other Participants Twenty-eight male collegiate basketball players with CAI were divided into 2 groups: hop-training group (age = 22.78 ± 3.09 years, mass = 82.59 ± 9.51 kg, height = 187.96 ± 7.93 cm) and control group (age = 22.57 ± 2.76 years, mass = 78.35 ± 7.02 kg, height = 185.69 ± 7.28 cm). Intervention(s) A 6-week supervised hop-stabilization training program that consisted of 18 training sessions. Main Outcome Measure(s) Lower extremity kinetics and kinematics during a jump-landing task and self-reported function were assessed before and after the 6-week training program. Results The hop-stabilization program resulted in improved self-reported function (P &lt; .05), larger sagittal-plane hip- and knee-flexion angles, and greater ankle dorsiflexion (P &lt; .05) relative to the control group. Reduced frontal-plane joint angles at the hip, knee, and ankle as well as decreased ground reaction forces and a longer time to peak ground reaction forces were observed in the hopping group compared with the control group after the intervention (P &lt; .05). Conclusions The 6-week hop-stabilization training program altered jump-landing biomechanics in male collegiate basketball players with CAI. These results may provide a potential mechanistic explanation for improvements in patient-reported outcomes and reductions in injury risk after ankle-sprain rehabilitation programs that incorporate hop-stabilization exercises.


Sports ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 24
Author(s):  
Themistoklis Tsatalas ◽  
Evangeli Karampina ◽  
Minas A. Mina ◽  
Dimitrios A. Patikas ◽  
Vasiliki C. Laschou ◽  
...  

Limited research exists in the literature regarding the biomechanics of the jump-landing sequence in individuals that experience symptoms of muscle damage. The present study investigated the effects of knee localized muscle damage on sagittal plane landing biomechanics during drop vertical jump (DVJ). Thirteen regional level athletes performed five sets of 15 maximal eccentric voluntary contractions of the knee extensors of both legs at 60°/s. Pelvic and lower body kinematics and kinetics were measured pre- and 48 h post-eccentric exercise. The examination of muscle damage indicators included isometric torque, muscle soreness, and serum creatine kinase (CK) activity. The results revealed that all indicators changed significantly following eccentric exercise (p < 0.05). Peak knee and hip joint flexion as well as peak anterior pelvic tilt significantly increased, whereas vertical ground reaction force (GRF), internal knee extension moment, and knee joint stiffness significantly decreased during landing (p < 0.05). Therefore, the participants displayed a softer landing pattern following knee-localized eccentric exercise while being in a muscle-damaged state. This observation provides new insights on how the DVJ landing kinematics and kinetics alter to compensate the impaired function of the knee extensors following exercise-induced muscle damage (EIMD) and residual muscle soreness 48 h post-exercise.


2020 ◽  
Vol 2 (4) ◽  
pp. 287-304 ◽  
Author(s):  
Jason S. Pedley ◽  
Rhodri S. Lloyd ◽  
Paul J. Read ◽  
Isabel S. Moore ◽  
Mark De Ste Croix ◽  
...  

Abstract Purpose Jump-landing assessments provide a means to quantify an individual’s ability to attenuate ground reaction forces, generate lower limb explosive power and maintain joint alignment. In order to identify risk factors that can be targeted through appropriate training interventions, it is necessary to establish which (scalar) objective kinetic, kinematic, and performance measures are most associated with lower-extremity injury. Methods Online searches of MEDLINE, SCOPUS, EBSCOHost, SPORTDiscus and PubMed databases were completed for all articles published before March 2020 in accordance with PRISMA guidelines. Results 40 articles investigating nine jump-landing assessments were included in this review. The 79% of studies using drop jump (n = 14) observed an association with future injury, while only 8% of countermovement jump studies (n = 13) observed an association with injury risk. The 57% of studies using unilateral assessments found associations with risk of injury (n = 14). Studies using performance measures (jump height/distance) as outcome measure were only associated with injury risk in 30% of cases. However, those using kinetic and/or kinematic analyses (knee abduction moment, knee valgus angle, knee separation distance, peak ground reaction force) found associations with injury in 89% of studies. Conclusion The landing element of jump-landing assessments appears to be superior for identifying individuals at greater risk of injury; likely due to a closer representation of the injury mechanism. Consequently, jump-landing assessments that involve attenuation of impact forces such as the drop jump appear most suited for this purpose but should involve assessment of frontal plane knee motion and ground reaction forces.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2564 ◽  
Author(s):  
Andrea Ancillao ◽  
Salvatore Tedesco ◽  
John Barton ◽  
Brendan O’Flynn

In the last few years, estimating ground reaction forces by means of wearable sensors has come to be a challenging research topic paving the way to kinetic analysis and sport performance testing outside of labs. One possible approach involves estimating the ground reaction forces from kinematic data obtained by inertial measurement units (IMUs) worn by the subject. As estimating kinetic quantities from kinematic data is not an easy task, several models and protocols have been developed over the years. Non-wearable sensors, such as optoelectronic systems along with force platforms, remain the most accurate systems to record motion. In this review, we identified, selected and categorized the methodologies for estimating the ground reaction forces from IMUs as proposed across the years. Scopus, Google Scholar, IEEE Xplore, and PubMed databases were interrogated on the topic of Ground Reaction Forces estimation based on kinematic data obtained by IMUs. The identified papers were classified according to the methodology proposed: (i) methods based on direct modelling; (ii) methods based on machine learning. The methods based on direct modelling were further classified according to the task studied (walking, running, jumping, etc.). Finally, we comparatively examined the methods in order to identify the most reliable approaches for the implementation of a ground reaction force estimator based on IMU data.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Author(s):  
Aaron Michael Pangan ◽  
Matthew J Leineweber

Abstract The back squat is one of the most effective exercises in strengthening the muscles of the lower extremity. Understanding the impact of footwear has on the biomechanics is imperative for maximizing the exercise training potential, preventing injury, and rehabilitating from injury. This review focuses on how different types of footwear affect the full-body kinematics, joint loads, muscle activity, and ground reaction forces in athletes of varying experience performing the weighted back squat. The literature search was conducted using three databases, and fourteen full-text articles were ultimately included in the review. The majority of these studies demonstrated that the choice of footwear directly impacts kinematics and kinetics. Weightlifting shoes were shown to decrease trunk lean and generate more plantarflexion relative to running shoes and barefoot lifting. Elevating the heel through the use of external squat wedges is popular clinical exercise during rehabilitation and was shown to provide similar effects to WLS. Additional research with a broader array of populations, particularly novice and female weightlifters, should be conducted to generalize the research results to non-athlete populations. Further work is also needed to characterize the specific effects of sole stiffness and heel elevation height on squatting mechanics.


2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.


2007 ◽  
Vol 23 (3) ◽  
pp. 180-189 ◽  
Author(s):  
Niell G. Elvin ◽  
Alex A. Elvin ◽  
Steven P. Arnoczky

Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.


1986 ◽  
Vol 15 (1) ◽  
pp. 27-34 ◽  
Author(s):  
R Seliktar ◽  
J Mizrahi

Human locomotion studies employing cinematography and force plates have been conducted during the last five decades with the goal of producing a clinically acceptable gait evaluation technique. The bulk of information contained in the kinetic studies was the major obstacle in achieving this goal. Our aim in this work was to explore the possibility of representing some locomotor abnormalities solely by their reflection on the ground reaction force characteristics. As a first stage towards the establishment of these relationships, the gait characteristics of below-knee amputees were examined. One hundred and thirty ground force test results as obtained on twenty three below-knee amputees were analysed. Different variables such as time durations of the various phases, peak forces, impulses, rate of change of the forces, and others, were examined. The conclusions suggest that some of these variables are suitable for evaluation of gait and some, such as small perturbations superimposed on the curve, may serve as indicators of specific malfunction of the prosthetic system.


2019 ◽  
Vol 14 (5) ◽  
pp. 658-666 ◽  
Author(s):  
Steffi L Colyer ◽  
Philip Graham-Smith ◽  
Aki IT Salo

Ground reaction forces produced on the blocks determine an athlete’s centre of mass motion during the sprint start, which is crucial to sprint performance. This study aimed to understand how force waveforms are associated with better sprint start performance. Fifty-seven sprinters (from junior to world elite) performed a series of block starts during which the ground reaction forces produced by the legs and arms were separately measured. Statistical parametric mapping (linear regression) revealed specific phases of these waveforms where forces were associated with average horizontal external power. Better performances were achieved by producing higher forces and directing the force vector more horizontally during the initial parts of the block phase (17–34% and 5–37%, respectively). During the mid-push (around the time of rear block exit: ∼54% of the block push), magnitudes of front block force differentiated performers, but orientation did not. Consequently, the ability to sustain high forces during the transition from bilateral to unilateral pushing was a performance-differentiating factor. Better athletes also exhibited a higher ratio of forces on the front block in the latter parts of unilateral pushing (81–92% of the block push), which seemed to allow these athletes to exit the blocks with lower centre of mass projection angles. Training should reflect these kinetic requirements, but also include technique-based aspects to increase both force production and orientation capacities. Specific training focused on enhancing anteroposterior force production during the transition between double- to single-leg propulsion could be beneficial for overall sprint start performance.


Sign in / Sign up

Export Citation Format

Share Document