Isolation and partial characterization of an Escherichia coli mutant resistant to colicin A

1975 ◽  
Vol 21 (10) ◽  
pp. 1595-1601 ◽  
Author(s):  
Marc Lavoie ◽  
Leo G. Mathieu

An Escherichia coli K12 mutant resistant to colicin A-CA31 apparently through loss of its receptor sites has been isolated and partially characterized. Resistance to colicin A was accompanied with a decreased sensitivity to colicins L-398 and E2-CA42, and to acridine dyes. The mutant strain displayed the same general pattern of tolerance or sensitivity as the parent strain towards eight antibiotics, colicins C, D, E1, E3, F2, F3, G, I, K, and N; phages T1, T2, T5, T6, T7, F2, λ vir, P1kc, [Formula: see text] 80, and BF23; and to methylene blue, triphenyltetrazolium chloride, ethylene-diaminetetraacetate (EDTA), deoxycholate, and sodium dodecyl sulfate. Conjugation and transduction experiments showed that a locus controlling resistance to colicin A-CA31 mapped at 21 min on the genetic map of this E. coli K12 strain.

2002 ◽  
Vol 70 (6) ◽  
pp. 2891-2898 ◽  
Author(s):  
Yukie Shibata ◽  
Yoshihisa Yamashita ◽  
Kazuhisa Ozaki ◽  
Yoshio Nakano ◽  
Toshihiko Koga

ABSTRACT Six genes (rgpA through rgpF) that were involved in assembling the rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans were previously identified (Y. Yamashita, Y. Tsukioka, K. Tomihisa, Y. Nakano, and T. Koga, J. Bacteriol. 180:5803-5807, 1998). The group-specific antigens of Lancefield group A, C, and E streptococci and the polysaccharide antigen of Streptococcus sobrinus have the same rhamnan backbone as the RGP of S. mutans. Escherichia coli harboring plasmid pRGP1 containing all six rgp genes did not synthesize complete RGP. However, E. coli carrying a plasmid with all of the rgp genes except for rgpE synthesized the rhamnan backbone of RGP without glucose side chains, suggesting that in addition to rgpE, another gene is required for glucose side-chain formation. Synthesis of the rhamnan backbone in E. coli required the initiation of transfer of N-acetylglucosamine to a lipid carrier and the expression of the rgpC and rgpD genes encoding the putative ABC transporter specific for RGP. The similarities in RGP synthesis between E. coli and S. mutans suggest common pathways for rhamnan synthesis. Therefore, we evaluated the rhamnosyl polymerization process in E. coli by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the lipooligosaccharide (LOS). An E. coli transformant harboring rgpA produced the LOS modified by the addition of a single rhamnose residue. Furthermore, the rgpA, rgpB, and rgpF genes of pRGP1 were independently mutated by an internal deletion, and the LOS chemotypes of their transformants were examined. The transformant with an rgpA deletion showed the same LOS profile as E. coli without a plasmid. The transformant with an rgpB deletion showed the same LOS profile as E. coli harboring rgpA alone. The transformant with an rgpF deletion showed the LOS band with the most retarded migration. On the basis of these results, we speculated that RgpA, RgpB, and RgpF, in that order, function in rhamnan polymerization.


1999 ◽  
Vol 67 (5) ◽  
pp. 2103-2109 ◽  
Author(s):  
Sheng-He Huang ◽  
Yu-Hua Chen ◽  
Qi Fu ◽  
Monique Stins ◽  
Ying Wang ◽  
...  

ABSTRACT Escherichia coli K1 is the most common gram-negative organism causing neonatal meningitis, but the mechanism by whichE. coli K1 crosses the blood-brain barrier is incompletely understood. We have previously described the cloning and molecular characterization of a determinant, ibeA (also called ibe10), from the chromosome of an invasive cerebrospinal fluid isolate of E. coli K1 strain RS218 (O18:K1:H7). Here we report the identification of another chromosomal locus, ibeB, which allows RS218 to invade brain microvascular endothelial cells (BMEC). The noninvasive TnphoA mutant 7A-33 exhibited <1% the invasive ability of the parent strain in vitro in BMEC and was significantly less invasive in the central nervous system in the newborn rat model of hematogenousE. coli meningitis than the parent strain. The TnphoA insert with flanking sequences was cloned and sequenced. A 1,383-nucleotide open reading frame (ORF) encoding a 50-kDa protein was identified and termed ibeB. This ORF was found to be 97% identical to a gene encoding a 50-kDa hypothetical protein (p77211) and located in the 13-min region of the E. coli K-12 genome. However, no homology was observed between ibeB and other known invasion genes when DNA and protein databases in GenBank were searched. Like the TnphoA insertion mutant 7A-33, an isogenic ibeBdeletion mutant (IB7D5) was unable to invade BMEC. A 7.0-kb locus containing ibeB was isolated from a LambdaGEM-12 genomic library of E. coli RS218 and subcloned into a pBluescript KS vector (pKS7-7B). pKS7-7B was capable of completely restoring the BMEC invasion of the noninvasive TnphoA mutant 7A-33 and the ibeB deletion mutant IB7D5 to the level of the parent strain. More importantly, the ibeB deletion mutant IB7D5 was fully complemented by pFN476 carrying the ibeB ORF (pFN7C), indicating thatibeB is required for E. coli K1 invasion of BMEC. Taken together, these findings indicate that severalE. coli determinants, including ibeA andibeB, contribute to crossing of the blood-brain barrier.


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


1986 ◽  
Vol 64 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Malcolm B. Perry ◽  
Leann MacLean ◽  
Douglas W. Griffith

The phenol-phase soluble lipopolysaccharide isolated from Escherichia coli 0:157 by the hot phenol–water extraction procedure was shown by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, periodate oxidation, methylation, and 13C and 1H nuclear magnetic resonance studies to be an unbranched linear polysaccharide with a tetrasaccharide repeating unit having the structure:[Formula: see text]The serological cross-reactivity of E. coli 0:157 with Brucella abortus, Yersinia enterocolitica (serotype 0:9), group N Salmonella, and some other E. coli species can be related immunochemically to the presence of 1,2-glycosylated N-acylated 4-amino-4,6-dideoxy-α-D-mannopyranosyl residues in the O-chains of their respective lipopolysaccharides.


1970 ◽  
Vol 18 ◽  
pp. 99-103 ◽  
Author(s):  
S Biswas ◽  
MAK Parvez ◽  
M Shafiquzzaman ◽  
S Nahar ◽  
MN Rahman

Context: Escherichia coli is shed in the feces of warm blooded animals and humans and thus potential for public health. Detection and characterization of E. coli in the ready-to-eat (RTE) foods concerns due to their presence indicates fecal contamination of the food.   Objective: To identify, characterize and RFLP pattern analysis of E. coli isolated from RTE foods vended in Islamic University campus, Kushtia.   Materials and Methods: Fifty samples from four types of consumed foods in six student halls of residence, some temporary restaurants of Islamic University, Kushtia were assessed for bacterial contamination by standard methods. Identification and characterization of E. coli isolates were performed using IMViC tests. Genomic DNA was used to perform RFLP pattern analysis.   Results: Thirty seven out of 50 (74%) examined samples of RTE foods had E. coli contamination. The highest number of E. coli was isolated from vegetable oriented RTE foods (90.90%) and fish, meat and cereals samples were also significantly E. coli positive. RFLP profiling of two E. coli isolates were observed.   Conclusion: The results of this study provide evidence that some RTE foods had unsatisfactory levels of contamination with E. coli. Thus street vended RTE food could be important potential vehicles for food-borne diseases. Molecular characterization may be exploited to identify food borne pathogen among different species.  Keywords: Ready-to-eat foods; Escherichia coli; RFLP pattern DOI: http://dx.doi.org/10.3329/jbs.v18i0.8783 JBS 2010; 18(0): 99-103


2018 ◽  
Vol 16 ◽  
pp. 205873921879295
Author(s):  
Saeed Ahmad ◽  
Muhammad Akram ◽  
Syed Muhammad Ali Shah ◽  
Sabira Sultana

This study was conducted to investigate the antipyretic effect of the hydroalcoholic extract of Corchorus depressus Linn. against Escherichia coli ( E. coli)-induced pyrexia in rabbits. Hydroalcohalic extracts of C. depressus were given orally at 25, 50, and 100 mg/kg for antipyretic affect in E. coli-induced fever in rabbits. The animals were divided into five groups of five each. Among these five groups, three received various doses of experimental treatments, whereas the fourth one served as positive control and received paracetamol. The fifth group of animals served as negative control and received no treatment. The body temperature of the rabbits was measured rectally over a period of 5 h. C. depressus exhibited better effects at dose rate of 25, 50, and 100 mg/kg. The hydroalcoholic extract of C. depressus has significant antipyretic effect. These results lend support to the popular use of C. depressus in traditional medicine as a remedy for pyrexia and suggest that the characterization of the principles for such activity deserves further investigation.


2001 ◽  
Vol 183 (21) ◽  
pp. 6466-6477 ◽  
Author(s):  
Christopher Kirkpatrick ◽  
Lisa M. Maurer ◽  
Nikki E. Oyelakin ◽  
Yuliya N. Yoncheva ◽  
Russell Maurer ◽  
...  

ABSTRACT Acetate and formate are major fermentation products ofEscherichia coli. Below pH 7, the balance shifts to lactate; an oversupply of acetate or formate retards growth. E. coli W3110 was grown with aeration in potassium-modified Luria broth buffered at pH 6.7 in the presence or absence of added acetate or formate, and the protein profiles were compared by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Acetate increased the steady-state expression levels of 37 proteins, including periplasmic transporters for amino acids and peptides (ArtI, FliY, OppA, and ProX), metabolic enzymes (YfiD and GatY), the RpoS growth phase regulon, and the autoinducer synthesis protein LuxS. Acetate repressed 17 proteins, among them phosphotransferase (Pta). An ackA-pta deletion, which nearly eliminates interconversion between acetate and acetyl-coenzyme A (acetyl-CoA), led to elevated basal levels of 16 of the acetate-inducible proteins, including the RpoS regulon. Consistent with RpoS activation, the ackA-pta strain also showed constitutive extreme-acid resistance. Formate, however, repressed 10 of the acetate-inducible proteins, including the RpoS regulon. Ten of the proteins with elevated basal levels in the ackA-ptastrain were repressed by growth of the mutant with formate; thus, the formate response took precedence over the loss of theackA-pta pathway. The similar effects of exogenous acetate and the ackA-pta deletion, and the opposite effect of formate, could have several causes; one possibility is that the excess buildup of acetyl-CoA upregulates stress proteins but excess formate depletes acetyl-CoA and downregulates these proteins.


2013 ◽  
Vol 62 (11) ◽  
pp. 1728-1734 ◽  
Author(s):  
Dongguo Wang ◽  
Enping Hu ◽  
Jiayu Chen ◽  
Xiulin Tao ◽  
Katelyn Gutierrez ◽  
...  

A total of 69 strains of Escherichia coli from patients in the Taizhou Municipal Hospital, China, were isolated, and 11 strains were identified that were resistant to bacitracin, chloramphenicol, tetracycline and erythromycin. These strains were PCR positive for at least two out of three genes, ybjG, dacC and mdfA, by gene mapping with conventional PCR detection. Conjugation experiments demonstrated that these genes existed in plasmids that conferred resistance. Novel ybjG and dacC variants were isolated from E. coli strains EC2163 and EC2347, which were obtained from the sputum of intensive care unit patients. Genetic mapping showed that the genes were located on 8200 kb plasmid regions flanked by EcoRI restriction sites. Three distinct genetic structures were identified among the 11 PCR-positive strains of E. coli, and two contained the novel ybjG and dacC variants. The putative amino acid differences in the ybjG and dacC gene variants were characterized. These results provide evidence for novel variants of ybjG and dacC, and suggest that multiple drug resistance in hospital strains of E. coli depends on the synergistic function of ybjG, dacC and mdfA within three distinct genetic structures in conjugative plasmids.


2015 ◽  
Vol 78 (5) ◽  
pp. 1018-1023 ◽  
Author(s):  
MEILI XI ◽  
QIAN WU ◽  
XIN WANG ◽  
BAOWEI YANG ◽  
XIAODONG XIA ◽  
...  

Extended-spectrum β-lactamase (ESBL)–producing Escherichia coli strains have been reported worldwide; however, the incidence and characterization of foodborne ESBL-producing E. coli strains have been rarely reported in the People's Republic of China. Among a collection of 659 E. coli isolates recovered from retail foods in Shaanxi Province, People's Republic of China, 223 cefoxitin-resistant and/or cefoperazone-resistant isolates were screened for ESBL production with the double disk diffusion test. The ESBL-producing isolates were characterized for antimicrobial resistance and the presence of blaTEM, blaSHV, and blaCTX-M genes. Isolates with blaCTX-M were further classified by PCR as having blaCTX-M-1, blaCTX-M-2, blaCTX-M-8, blaCTX-M-9, or blaCTX-M-25. One hundred forty-seven isolates were identified as ESBL positive. PCR detection revealed that 146 isolates (99.3%) contained the blaCTX-M gene. Among these isolates, 42 (28.8%) were positive for the enzyme CTX-M-1, 5 (3.4%) for CTX-M-2, and 99 (67.8%) for CTX-M-9. No CTX-M-8 and CTX-M-25 were found in this study. One hundred fifteen isolates (78.2%) were positive for the blaTEM gene, but blaSHV was not detected. Among the 147 ESBL-producing E. coli isolates, 75 (51.0%), 35 (23.8%), and 4 (2.7%) isolates were positive for blaTEM and blaCTX-M-9, blaTEM and blaCTX-M-1, and blaTEM and blaCTX-M-2, respectively. All of the 147 ESBL-producing isolates were resistant to three or more non–β-lactam antibiotics. This study provides evidence that foodborne E. coli can harbor ESBL-encoding genes. Thus, food could be a vehicle for the dissemination of ESBL-producing E. coli strains, a situation that requires surveillance and appropriate management strategies.


Sign in / Sign up

Export Citation Format

Share Document