THE METABOLISM OF EXOGENOUS RIBONUCLEIC ACIDS INJECTED INTO MICE

1965 ◽  
Vol 43 (7) ◽  
pp. 949-958 ◽  
Author(s):  
S. Sved

The fate of RNA administered intravenously has been investigated in mice and rats, using yeast RNA uniformly labeled with C14. Much of the administered radioactivity was found in the CO2 exhaled within 5 hours, the rest being distributed mostly between the free nucleotides and carbohydrates of the nine tissues tested. Brain showed consistently low values in all chemical fractions. Administration of large amounts of RNA over a period of 5 days caused an increase in the incorporation of radioactivity into the nucleic acids of liver and kidney and into the amino acid pool of the body. A slight increase in protein synthesis in the brain was also noted. From results obtained by studying the rate of appearance of the radioactivity in the CO2 after injections of labeled RNA, ribose, orotic acid, and RNA mixed with unlabeled ribose, it was concluded that most of the exogenous RNA, when injected, is rapidly degraded before re-utilization of some of its components.


2017 ◽  
Vol 3 (2) ◽  
pp. 34
Author(s):  
Puspito Arum ◽  
Dahlia Indah Amareta ◽  
Faridlotul Zannah

Background: Hyperactive is behavior which demonstrates the attitude of more energy than normal behavior. Level of neurotransmitter dopamine and serotonin in the body may be the factor of this disorder behavior.  Level of phenylalanine and serotonin were found high in hyperactive children with autism. Level phenylalanine in the brain shows that it is not changed into tyrosine so dopamine can not be form. Serotonin derived from an amino acid tryptophan.Objective: To understand the association between phenylalanine and tryptophan intake to hyperactivity of  children with autism.Methods: A survey analytic research with cross sectional approach involving 20 subjects. Phenylalanine and tryptophan intake data was collected by Semi Quantitative-Food Frequency Questionnaire (SQ-FFQ), and hyperactivity disorder of children with autism was measured based on DSM-IV guidelines. Results: Eight (40%) children had low hyperactivity, 9 (45%) children had moderate hyperactivity, 2 (10%) children had severe hyperactivity, and 1 (5%) child had very severe hyperactivity. Mean phenylalanine intake was 4899.74mg (±1543.42) with maximum and minimum intake respectively 7735.42mg and 1843.88mg. Tryptophan intake was 1153.91mg (±384.99) with maximum and minimum intake respectively 1953.89mg and 367.69mg. There was significant association between phenylalanine intake (p=0,034; r=0,477) and tryptophan intake and hyperactivity (p=0,026; r=0,492).Conclusion: There is an association between intakes of amino acid phenylalanine and amino acid tryptophan with hyperactivity of autistic children





1957 ◽  
Vol 40 (3) ◽  
pp. 451-490 ◽  
Author(s):  
V. G. Allfrey ◽  
A. E. Mirsky ◽  
Syozo Osawa

1. Nuclei prepared from calf thymus tissue in a sucrose medium actively incorporate labelled amino acids into their proteins. This is an aerobic process which is dependent on nuclear oxidative phosphorylation. 2. Evidence is presented to show that the uptake of amino acids represents nuclear protein synthesis. 3. The deoxyribonucleic acid of the nucleus plays a role in amino acid incorporation. Protein synthesis virtually ceases when the DNA is removed from the nucleus, and uptake resumes when the DNA is restored. 4. In the essential mechanism of amino acid incorporation, the role of the DNA can be filled by denatured or partially degraded DNA, by DNAs from other tissues, and even by RNA. Purine and pyrimidine bases, monoribonucleotides, and certain dinucleotides are unable to substitute for DNA in this system. 5. When the proteins of the nucleus are fractionated and classified according to their specific activities, one finds the histones to be relatively inert. The protein fraction most closely associated with the DNA has a very high activity. A readily extractable ribonucleoprotein complex is also extremely active, and it is tempting to speculate that this may be an intermediary in nucleocytoplasmic interaction. 6. The isolated nucleus can incorporate glycine into nucleic acid purines, and orotic acid into the pyrimidines of its RNA. Orotic acid uptake into nuclear RNA requires the presence of the DNA. 7. The synthesis of ribonucleic acid can be inhibited at any time by a benzimidazole riboside (DRB) (which also retards influenza virus multiplication (11)). 8. The incorporation of amino acids into nuclear proteins seems to require a preliminary activation of the nucleus. This can be inhibited by the same benzimidazole derivative (DRB) which interferes with RNA synthesis, provided that the inhibitor is present at the outset of the incubation. DRB added 30 minutes later has no effect on nuclear protein synthesis. These results suggest that the activation of the nucleus so that it actively incorporates amino acids into its proteins requires a preliminary synthesis of ribonucleic acid. 9. Together with earlier observations (27, 28) on the incorporation of amino acids by cytoplasmic particulates, these results show that protein synthesis can occur in both nucleus and cytoplasm.



1994 ◽  
Vol 302 (2) ◽  
pp. 601-610 ◽  
Author(s):  
D S Dunlop ◽  
X R Yang ◽  
A Lajtha

Increasing the plasma phenylalanine concentration to levels as high as 0.560-0.870 mM (over ten times normal levels) had no detectable effect on the rate of brain protein synthesis in adult rats. The average rates for 7-week-old rats were: valine, 0.58 +/- 0.05%/h, phenylalanine, 0.59 +/- 0.06%/h, and tyrosine, 0.60 +/- 0.09%/h, or 0.59 +/- 0.06%/h overall. Synthesis rates calculated on the basis of the specific activity of the tRNA-bound amino acid were slightly lower (4% lower for phenylalanine) than those based on the brain free amino acid pool. Similarly, the specific activities of valine and phenylalanine in microdialysis fluid from striatum were practically the same as those in the brain free amino acid pool. Thus the specific activities of the valine and phenylalanine brain free pools are good measures of the precursor specific activity for protein synthesis. In any event, synthesis rates, whether based on the specific activities of the amino acids in the brain free pool or those bound to tRNA, were unaffected by elevated levels of plasma phenylalanine. Brain protein synthesis rates measured after the administration of quite large doses of phenylalanine (> 1.5 mumol/g) or valine (15 mumol/g) were in agreement (0.62 +/- 0.01 and 0.65 +/- 0.01%/h respectively) with the rates determined with infusions of trace amounts of amino acids. Thus the technique of stabilizing precursor-specific activity, and pushing values in the brain close to those of the plasma, by the administration of large quantities of precursor, appears to be valid.



1998 ◽  
Vol 274 (5) ◽  
pp. E852-E859
Author(s):  
C. Beebe Smith ◽  
C. Eintrei ◽  
J. Kang ◽  
Y. Sun

We have examined the effects of a surgical level of thiopental anesthesia in adult male rats on local rates of cerebral protein synthesis with the quantitative autoradiographicl-[1-14C]leucine method. The relative contribution of leucine derived from protein breakdown to the intracellular precursor amino acid pool for protein synthesis was found to be statistically significantly decreased in the anesthetized rats compared with controls. In the brain as a whole and in 30 of the 35 brain regions examined, rates of protein synthesis were decreased (1–11%) in the anesthetized rats. Decreases were statistically significant ( P ≤ 0.05) in the brain as a whole and in six of the regions, and they approached statistical significance in an additional 13 regions, indicating a tendency for a generalized but small effect.



1974 ◽  
Vol 4 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Guadalupe Baños ◽  
P. M. Daniel ◽  
S. R. Moorhouse ◽  
O. E. Pratt

SYSNOPSISAbnormally high levels of various amino acids were maintained in the bloodstream of rats, causing saturation of amino acid transport into the brain and partial exclusion from the brain of other amino acids which are necessary for protein synthesis. Excluded amino acids could be made to enter the brain by raising their concentration in the bloodstream. The possible relevance of these findings to improvements in the dietary treatment of some inborn errors of metabolism is discussed.



2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 13-13
Author(s):  
Jaap van Milgen ◽  
Nathalie Le Floc’h

Abstract Histidine is a constituent amino acid of body proteins and, once incorporated in protein, histidine can be methylated post-translationally to methyl-histidine. Histidine is also a precursor of histamine, a neurotransmitter and involved in the immune response. Histidine and histamine are constituents of a number of dipeptides, which act as pH buffers, metal chelating agents, and anti-oxidants, especially in skeletal muscles and in the brain. A considerable fraction of whole-body histidine is present as carnosine, the dipeptide of histidine and β-alanine. In the longissimus muscle, about 40% of the total histidine content is present as carnosine. The histidine in carnosine can be methylated to anserine or balenine, and the pig is among the few species that synthesize both forms. Hydrolysis of body protein and of histidine-containing dipeptides results in the release of the constituent amino acids. However, only the histidine of protein and carnosine can be reused for protein synthesis. Methyl-histidine is either excreted in the urine or remains bound in the dipeptides and accumulates in the body. Because carnosine represents such a large histidine reservoir, a dietary histidine deficiency may not directly lead to a reduction in growth, especially if growth is given a higher priority for histidine utilization than maintaining or depleting the histidine-containing dipeptide reserves. Few histidine dose-response studies have been done in piglets and differences in the estimated requirements may be due to differences in diluting or depleting the dipeptide reserves. However, at low histidine intakes, both feed intake and growth are reduced and a reduction of the histidine-to-lysine supply by 1 percentage point results in a growth reduction of 4%. Histidine dose-response studies need to consider the role of histidine as a constituent amino acid of body protein as well as its role in dipeptides.



2020 ◽  
Vol 27 ◽  
Author(s):  
Ayako Ushio ◽  
Ko Eto

Background: Mild hypothermia, i.e. maintenance of organ temperature by up to 8°C lower than body temperature, is a critical strategy for exerting some functions of the cells and organs normally, and is an useful therapy for recovering properly from some diseases, including myocardial infarction, cardiac arrest, brain injury, and ischemic stroke. Nevertheless, there were no focusses so far on organ temperature and potential responses of gene expression to organ temperature in organs of homeothermic animals that survive under normal conditions. Objective: The present study aimed to assess organ temperature in homeothermic animals and evaluate the effect of their organ temperature on the expression of the cold shock protein RNA binding motif protein 3 (RBM3), and to gain insights into the organ temperature-mediated regulation of RBM3 gene transcription via Nuclear factor β-light-chain-enhancer of activated B cells (NF-κB) p65, which had been identified as a transcription factor that is activated by undergoing the Ser276 phosphorylation and promotes the RBM3 gene expression during mild hypothermia. Methods: We measured the temperature of several organs, where RBM3 expression was examined, in female and male mice. Next, in male mice, we tested NF-κB p65 expression and its Ser276 phosphorylation in organs that have their lower temperature than body temperature and compared them with those in organs that have their temperature near body temperature. Results: Organ temperature was around 32°C in the brain and reproductive organs, which is lower than the body temperature, and around 37°C in the heart, liver, and kidney, which is comparable to the body temperature. The expression of RBM3 was detected greatly in the brain and reproductive organs with their organ temperature of around 32°C, and poorly in the heart, liver, and kidney with their organ temperature of around 37°C. In accordance with the changes in the RBM3 expression, the NF-κB p65 Ser276 phosphorylation was detected more greatly in the testis and brain with their organ temperature of around 32°C, than in the heart, liver, and kidney with their organ temperature of around 37°C, although the NF-κB p65 expression was unchanged among all the organs tested. Discussion: Our data suggested that organ temperature lower than body temperature causes the expression of RBM3 in the brain and reproductive organs of mice, and that lower organ temperature causes the NF-κB p65 activation through the Ser276 phosphorylation, resulting in an increase in the RBM3 gene transcription, in the brain and reproductive organs of mice. Conclusion: The study may present the possibility that organ temperature-induced alterations in gene expression are organ specific in homeotherms and the possibility that organ temperature-induced alterations in gene expression are transcriptionally regulated in some organs of homeotherms.



2012 ◽  
Vol 108 (S2) ◽  
pp. S306-S314 ◽  
Author(s):  
Rajavel Elango ◽  
Crystal Levesque ◽  
Ronald O. Ball ◽  
Paul B. Pencharz

The nutritive value of food protein sources is dependent on the amino acid composition and the bioavailability of the nutritionally indispensable amino acids. Traditionally the methods developed to determine amino acid bioavailability have focused on intestinal absorption or digestibility, which is calculated as the percent of amino acid intake that does not appear in digesta or faeces. Traditional digestibility based methods do not always account for gut endogenous amino acid losses or absorbed amino acids which are unavailable due to the effect of heat processing and the presence of anti-nutritional factors, though methods have been developed to address these issues. Furthermore, digestibility based methods require the use of animal models, thus there is a need to developin vivomethods that can be applied directly in human subjects to identify the proportion of dietary amino acids which is bioavailable, or metabolically available to the body for protein synthesis following digestion and absorption. The indicator amino acid oxidation (IAAO) method developed in our laboratory for humans has been systematically applied to determine almost all indispensable amino acid requirements in adult humans. Oxidation of the indicator amino acid is inversely proportional to whole body protein synthesis and responds rapidly to changes in the bioavailability of amino acids for metabolic processes. Using the IAAO concept, we developed a newin vivomethod in growing pigs, pregnant sows and adult humans to identify the metabolic availability of amino acids in foods. The stable isotope based metabolic availability method is suitable for rapid and routine analysis in humans, and can be used to integrate amino acid requirement data with dietary amino acid availability of foods.



1970 ◽  
Vol 24 (3) ◽  
pp. 727-734 ◽  
Author(s):  
Deirdre Ryan ◽  
P. J. Warren

1. 64Cu as copper chloride in aqueous solution was given by intraperitoneal injection to rats varying in age from a few hours to 14 weeks. The isotope was allowed to circulate in the body for 24 h.2. The amount of gamma radioactivity present in the brain and blood was measured and the percentage of the initial dose present was calculated. It was shown that the brain 64Cu activity reached a maximum around the 16th day of life and that the blood showed a steady decrease in the 64Cu activity per g from birth to maturity. Measurements were also made on the liver and kidney.3. The excretion of 64Cu in the urine and faeces in 24 h was also studied. Approximately 30% of the isotope was excreted in that time, mostly in the faeces.4. A limited number of experiments in three different age groups were carried out to discover whether changes in specific activity of the isotope given to rats had a significant effect on the percentage of 64Cu taken up by the brain and blood. No such effect was seen.



Sign in / Sign up

Export Citation Format

Share Document