Heat capacities of O2, N2, CO, and NO at low temperatures

1969 ◽  
Vol 47 (1) ◽  
pp. 23-29 ◽  
Author(s):  
J. C. Burford ◽  
G. M. Graham

The heat capacities of O2, N2, CO, and NO have been measured in the temperature range from 4.2 °K to about 0.8 °K. No anomalous behavior was found. The results were fitted to the Debye expression (assuming 3 degrees of freedom per molecule) to yield the following values for Θ0: O2, 104.5 ± 1.0 °K; N2, 83.5 ± 1.0 °K; CO, 103.0 ± 1.0 °K; NO, 122 ± 2 °K. The results are discussed in terms of the residual entropies of CO and NO.

Author(s):  
A.M. Magerramov ◽  
◽  
N.I. Kurbanova ◽  
M.N. Bayramov ◽  
N.A. Alimirzoyeva ◽  
...  

Using radiothermoluminescence (RTL), the molecular mobility features in the temperature range of 77-300 K were studied for the polypropylene (PP)/ethylene propylene diene elastomer SKEPT-4044 with NiO, Cu2O and Fe3O4 nanoparticles (NPs) based on ABS-acrylonitrile butadiene or SCS-divinyl styrene matrices. It has been shown that the introduction of nanofillers in PP significantly affects the nature and temperature of γ- and β-relaxation processes, while the region of manifestation of the β-process noticeably shifts to the region of low temperatures. Composites with Cu2O NPs have a higher β-transition temperature Tβ than composites with other NPs. It was found that PP/SKEPT-4044 composites with Cu2O NPs with a dispersion of 11-15 nm and acrylonitrile butadiene thermoplastics have optimal frost resistance compared to other compositions.


1969 ◽  
Vol 11 (2) ◽  
pp. 189-205 ◽  
Author(s):  
E. A. Bruges ◽  
M. R. Gibson

Equations specifying the dynamic viscosity of compressed water and steam are presented. In the temperature range 0-100cC the location of the inversion locus (mu) is defined for the first time with some precision. The low pressure steam results are re-correlated and a higher inversion temperature is indicated than that previously accepted. From 100 to 600°C values of viscosity are derived up to 3·5 kilobar and between 600 and 1500°C up to 1 kilobar. All the original observations in the gaseous phase have been corrected to a consistent set of densities and deviation plots for all the new correlations are given. Although the equations give values within the tolerances of the International Skeleton Table it is clear that the range and tolerances of the latter could with some advantage be revised to give twice the existing temperature range and over 10 times the existing pressure range at low temperatures. A list of the observations used and their deviations from the correlating equations is available as a separate publication.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor N. Karnaukhov

AbstractUsing mean field approach, we provide analytical and numerical solution of the symmetric Anderson lattice for arbitrary dimension at half filling. The symmetric Anderson lattice is equivalent to the Kondo lattice, which makes it possible to study the behavior of an electron liquid in the Kondo lattice. We have shown that, due to hybridization (through an effective field due to localized electrons) of electrons with different spins and momenta $$\mathbf{k} $$ k and $$\mathbf{k} +\overrightarrow{\pi }$$ k + π → , the gap in the electron spectrum opens at half filling. Such hybridization breaks the conservation of the total magnetic momentum of electrons, the spontaneous symmetry is broken. The state of electron liquid is characterized by a large Fermi surface. A gap in the spectrum is calculated depending on the magnitude of the on-site Coulomb repulsion and value of s–d hybridization for the chain, as well as for square and cubic lattices. Anomalous behavior of the heat capacity at low temperatures in the gapped state, which is realized in the symmetric Anderson lattice, was also found.


2004 ◽  
Vol 825 ◽  
Author(s):  
I. Bossi ◽  
N.R. Dilley ◽  
J. R. O'Brien ◽  
S. Spagna

AbstractMagnetization measurements were performed as a function of magnetic field H and temperature T on samples of nine different materials including clear fused quartz, cartridge brass, G-10 glass-reinforced epoxy, acetal homopolymer, glass-filled acetal, phenolic, and other plastics. A small yet distinct amount of ferromagnetic or paramagnetic impurities is observed in all the materials investigated in this study except quartz. In contrast, the magnetic response of quartz is typical of a diamagnet over the temperature range 5 K to 300 K. The volume susceptibility is equal to −4.4×10−7 (cgs) over the whole temperature range.


1925 ◽  
Vol 47 (8) ◽  
pp. 2117-2121 ◽  
Author(s):  
Worth H. Rodebush ◽  
John C. Michalek

2015 ◽  
Vol 29 (14) ◽  
pp. 1550091 ◽  
Author(s):  
Ü. Akdere

Classical molecular dynamics simulation calculations of silver bromide, AgBr, and silver chloride, AgCl. in constant volume–energy (NVE) and constant pressure–temperature (NPT) ensembles have been performed. The temperature dependence of linear thermal expansion and molar heat capacities at constant volume and pressure have been presented at solid and liquid phases. The anomalous behavior of these properties about 200 K below the melting temperatures has been analyzed within the frame of the onset of the transition to the superionic phase.


1977 ◽  
Vol 10 (1) ◽  
pp. 14-17 ◽  
Author(s):  
D. P. Pope ◽  
J. L. Garin

The macroscopic yield stress of Ni3Al increases rapidly with temperature, reaching a maximum at about 700°C. Such anomalous behavior has been observed in other ordered alloys which undergo partial disordering with increasing temperature, e.g. Cu3Au. The long-range order parameter, S, of stoichiometric Ni3Al powder was measured over the temperature range 25°C to 1000°C and great care was taken to ensure a fine particle size and thus avoid extinction effects. The results of this study showed that, in Ni3Al, S remains constant at about 0.93 over the entire temperature range investigated. This means that theories relating the strength of ordered alloys to S are not applicable to Ni3Al.


2021 ◽  
Vol 103 (3) ◽  
pp. 67-73
Author(s):  
A.A. Toibek ◽  
◽  
K.T. Rustembekov ◽  
D.A. Kaikenov ◽  
M. Stoev ◽  
...  

For the first time, double gadolinium tellurites of the composition GdMIITeO4.5 (MII — Sr, Ba) were synthesized by the solid-phase method. The solid-phase synthesis of samples was carried out from decrepitated gadolinium (III) and tellurium (IV) oxides, strontium, and barium carbonates according to the standard ceramic technology. The synthesis was carried out in the temperature range of 800-1100 °C. The samples obtained were confirmed by X-ray phase analysis. X-ray phase analysis was carried out on an Empyrean instrument in the XRDML Pananalitical format. The intensity of the diffraction maxima was estimated on a 100-point scale. X-ray diffraction patterns indexing of the powder of gadolinium tellurites — alkaline earth metals studied were carried out by the homology method. The reliability and correctness of the results of indexing the X-ray diffraction patterns are confirmed by the good agreement between the experimental and calculated values of the interplanar distances (d) and the agreement between the values of the X-ray and pycnometric densities. It was found that compounds GdSrTeO4.5 and GdBaTeO4.5 crystallize in the monoclinic system and have the unit cell parameters, namely GdSrTeO4.5 — a = 12.7610, b = 10.4289, c = 8.6235 Å, V° = 1141.83 Å3, β = 95.77°, Z = 5, ρrent. = 3.22, ρpikn. = (3.10±0.09) g/cm3; GdBaTeO4.5 — a = 15.7272, b = 15.8351, c = 7.1393 Å, V° = 1769.72 Å3, β = 95.53°, Z = 8, ρrent = 3.71, ρpick = (3.61±0.10) g/cm3. Using the Landiya method, the standard heat capacities of the compounds were estimated from the calculated values of the standard entropies, and the temperature dependences of the heat capacities of the gadolinium tellurites synthesized were determined in the temperature range of 298–850 K.


Sign in / Sign up

Export Citation Format

Share Document