Growth by the CSVT (close-spaced vapor transport) technique and characterization of epitaxial GaAs layers on Ge substrates

1991 ◽  
Vol 69 (3-4) ◽  
pp. 390-406 ◽  
Author(s):  
E. Koskiahde ◽  
D. Cossement ◽  
N. Guelton ◽  
R. Fillit ◽  
R. G. Saint-Jacques ◽  
...  

Epitaxial layers of GaAs on (100) GaAs substrates can be grown by close-spaced vapor transport using water vapor as the transporting agent. The parameters for the transport are [Formula: see text], ΔT′ = 45 °C, and δ = 0.03 cm (where [Formula: see text] is the temperature of the graphite heating the substrate; ΔT′, the temperature difference between the graphite heating the source and the one heating the substrate; and δ, the thickness of the spacer separating the GaAs source and the substrate). Mirrorlike epitaxial layers of GaAs are obtained with these parameters when water vapor, at a partial pressure of 4.58 Torr (1 Torr = 133.3 Pa), is introduced with H2 at the beginning of the temperature rise of the reactor. The dimensions of the epitaxial layer are only limited by the size of the reactor. Using the same growth conditions, it is not possible to obtain mirrorlike films of GaAs on (100) Ge substrates. Instead, the layers are dull grey (sample no. 1). It is however not a polycrystalline deposition since the pole figures, obtained by X-ray diffraction, reveal only four crystallographic orientations; {100} the main one, {221} the secondary one, and {021} + {112} two minor contributions. Mirrorlike films of GaAs on (100) Ge substrates of less than 1 cm2 have been obtained with [Formula: see text], ΔT′ = 25 °C, and δ = 0.03 cm. With these conditions, the growth rate is 0.25 ± 0.08 μm min−1. The time evolution of [Formula: see text] and ΔT′, from room temperature up to the equilibrium temperature also influences the surface morphology of GaAs films on Ge while this was not the case for GaAs films on GaAs substrates. When the Ge substrate is larger than 1 cm2, the centre of the film becomes textured but the edges remain mirrorlike (sample no. 2). Pole figures obtained for the center and the edges of sample no. 2 are similar. They are characterized by one large diffraction due to the {100} orientation. A few random crystallographic orientations and sometimes the {221} orientation, however, bearly emerge from the background of these pole figures. Also transmission electron microscopy does not reveal any major difference between the center and the edges of sample no. 2. The density of threading dislocations is the same for both regions, varying from 108 cm−2, close (2–3 μm) to the interface, to 107 cm−2 in the thickness of the film. No misfit dislocations were observed. Antiphase boundaries are present in both regions as well. The only difference between the centre and the edges of sample no. 2 involves microtwin bundles: in the center region, there are two microtwin bundles per micrometre of interface, extending up to 6 μm in the GaAs film while on the edges, there is one bundle per micrometre with an extension of only one micrometre into the epitaxial layer. Mirrorlike GaAs films can be obtained on (100) Ge substrates of at least 1 in (1 in = 2.5 cm) in diameter by increasing δ to 0.2 cm and by injecting water vapor in the reactor only when [Formula: see text] reached 650 °C; the other deposition parameters remain the same as for sample no. 2. In these conditions, the growth rate of GaAs is 0.075 ± 0.020 μm min−1. By using a transport model based on thermodynamics, it is demonstrated that the flux intensity of GaAs transported from the source to the substrate, as well as the eventual presence of GeO as a nucleation site for GaAs on Ge, are both important for the morphology of the epitaxial layer.

1994 ◽  
Vol 72 (1-2) ◽  
pp. 44-50
Author(s):  
D. Cossement ◽  
Z. Huang ◽  
G. Perron ◽  
B. Jean ◽  
J. P. Dodelet

In view of developing the close-spaced vapor transport technique (CSVT) to obtain III/V homojunction solar cells, it is necessary to finely control the growth rate of GaAs epitaxial layers. This has been performed either by controlling the water vapor pressure, [Formula: see text] injected in the reactor along with H2, in H2 + H2O ambient, or by controlling the water vapor pressure generated in situ by the reaction of H2 + CO2 in the reactor. For H2 + CO2 ambient, [Formula: see text], controls [Formula: see text] according to the following reaction: [Formula: see text]. The growth rates calculated with a diffusion controlled model are in agreement with the experimental values for both ambients, including the observation of a maximum in the evolution of the growth rate with [Formula: see text], Controlling the growth rate of GaAs by changing [Formula: see text] affects the carrier density (NA–ND) of p-type layers grown from Zn-doped GaAs sources. In both ambients (NA–ND) is a function of [Formula: see text]. Such a behavior is also obtained for the calculated carrier densities. It is the result of the transport of Zn as ZnO in CSVT. In H2 + CO2 ambient, where H2O and C are generated in situ, carbon is not incorporated as a major p-type doping impurity, contrarily to expectations, n-type GaAs layers were also obtained from Te-doped GaAs sources. In that case, the measured NA–ND values are not affected by changes in [Formula: see text] because water is not involved in the transport of Te in CSVT.


1993 ◽  
Vol 71 (9-10) ◽  
pp. 462-469 ◽  
Author(s):  
Z. Huang ◽  
N. Guelton ◽  
D. Cossement ◽  
D. Guay ◽  
R.G. Saint-Jacques ◽  
...  

GaAs epitaxial layers were grown on (100) GaAs and vicinal substrates (2° off (100) toward (110)) by close-spaced vapor transport (CSVT) using water vapor as transport agent. We demonstrate that the temperature at which water vapor is injected into the reactor, Tinj, is a criticial parameter for the layer morphology. Furthermore, the optimum Tinj, is a function of water partial pressure, [Formula: see text]. For each [Formula: see text], there is a Tinj range for which specular layers are obtained. This range is defined for [Formula: see text] Torr (1 Torr = 133.3 Pa). The only defects appearing on the specular layers grown on (100) GaAs substrates are oval hillocks (structureless oval defects, and occasionally oval plateaus and oval defects with a faceted central core head). All oval hillocks have their long axis, L1, parallel to < 110 >. By measuring L1 and L2 (the short axis of the defect, perpendicular to L1), lateral growth rates of GaAs are obtained. They vary with [Formula: see text]. At high [Formula: see text], [Formula: see text] is 1 at low water vapor pressure. All oval hillocks result from the contamination of the substrate surface. By using vicinal GaAs substrates, the oval hillock density was decreased to about 500 cm−2, a result similar to that obtained with molecular beam epitaxy.


1994 ◽  
Vol 72 (5-6) ◽  
pp. 225-232 ◽  
Author(s):  
G. Lalande ◽  
N. Guelton ◽  
D. Cossement ◽  
R. G. Saint-Jacques ◽  
J. P. Dodelet

GaAs epitaxial layers are grown by close-spaced vapor transport (CSVT) on (100)Ge substrates and (100)Ge substrates misoriented 1.5° and 3° toward (011). Water vapor is used as the transport agent. When the temperatures of the GaAs source (T1) and of the Ge substrate (T2) are 800 and 750 °C, respectively, the growth rate is about 3 μm h−1. When an optimum source–substrate temperature evolution is followed, it is possible to grow specular layers of GaAs/Ge that contain only a small number (< 105 cm−2) of threading dislocations. All antiphase boundaries (APBs) annihilate close to the interface (from about 230 nm for (100)Ge substrates to about 65 nm for vicinal (3° off) (100)Ge substrates). The GaAs growth occurs via the coalescence of 3D nuclei that are formed on an arsenic prelayer n-type GaAs layers are always obtained. By encapsulating the Ge substrate, it is possible to drastically decrease the autodoping resulting from the transport of Ge by water vapor in the same growth conditions as those prevailing for GaAs. After encapsulation, uncompensated doping densities ND – NA in the order of 5 × 1016 cm−3 are easily obtained for GaAs/Ge films grown from undoped semi-insulating GaAs sources. These GaAs/Ge layers can be used as bases for solar cells.


2003 ◽  
Vol 20 (3) ◽  
pp. 333-342 ◽  
Author(s):  
Xiangde Xu ◽  
Qiuju Miao ◽  
Jizhi Wang ◽  
Xuejin Zhang

1997 ◽  
Vol 483 ◽  
Author(s):  
I. Khlebnikov ◽  
T. S. Sudarshan ◽  
V. Madangarli ◽  
M. A. Capano

AbstractIn this paper we demonstrate the growth of thick SiC epitaxial layers (≥100 μm) of good structural quality at a high growth rate (>100 μm/hr) by controlling the vapor dynamics during conventional physical vapor transport (PVT) process. We propose that our PVT technique be used to ‘repair’ or ‘heal’ commercially available substrates dominated by micropipes, by ‘filling up’ the micropipes through crystal growth inside the micropipe. Extensive experiments performed on thick SiC epitaxial layers grown on Lely substrates indicate that the thick epitaxial layers are of single polytype of high structural quality, with a single peak X-ray rocking curve of less than 12 arcsecs FWHM.


1982 ◽  
Vol 17 ◽  
Author(s):  
Walter Roth ◽  
Herbert Kräutle ◽  
Annemarie Krings ◽  
Heinz Beneking

ABSTRACTStimulated growth of single crystalline GaAs has been obtained by irradiation of (100) oriented GaAs substrates inside an MOCVD reactor with a pulsed Nd-YAG laser.Process temperatures have been varied between 540°C and 360°C. In the non-irradiated areas, below 480°C substrate temperature the growth rate decreases rapidly, whereas in the irradiated part of the substrate epitaxial layers could be grown in the whole temperature range investigated. Below 450°C, the growth is reaction limited.


2006 ◽  
Vol 527-529 ◽  
pp. 163-166 ◽  
Author(s):  
Francesco La Via ◽  
G. Galvagno ◽  
A. Firrincieli ◽  
Fabrizio Roccaforte ◽  
Salvatore di Franco ◽  
...  

The growth rate of 4H-SiC epi layers has been increased by a factor 3 (up to 18μm/h) with respect to the standard process with the introduction of HCl in the deposition chamber. The epitaxial layers grown with the addition of HCl have been characterized by electrical, optical and structural characterization methods. An optimized process without the addition of HCl is reported for comparison. The Schottky diodes, manufactured on the epitaxial layer grown with the addition of HCl at 1600 °C, have electrical characteristics comparable with the standard epitaxial process with the advantage of an epitaxial growth rate three times higher.


2006 ◽  
Vol 527-529 ◽  
pp. 179-182 ◽  
Author(s):  
Stefano Leone ◽  
Marco Mauceri ◽  
Giuseppe Pistone ◽  
Giuseppe Abbondanza ◽  
F. Portuese ◽  
...  

4H-SiC epitaxial layers have been grown using trichlorosilane (TCS) as the silicon precursor source together with ethylene as the carbon precursor source. A higher C/Si ratio is necessary compared with the silane/ethylene system. This ratio has to be reduced especially at higher Si/H2 ratio because the step-bunching effect occurs. From the comparison with the process that uses silane as the silicon precursor, a 15% higher growth rate has been found using TCS (trichlorosilane) at the same Si/H2 ratio. Furthermore, in the TCS process, the presence of chlorine, that reduces the possibility of silicon droplet formation, allows to use a high Si/H2 ratio and then to reach high growth rates (16 *m/h). The obtained results on the growth rates, the surface roughness and the crystal quality are very promising.


2005 ◽  
Vol 483-485 ◽  
pp. 429-432 ◽  
Author(s):  
Francesco La Via ◽  
Fabrizio Roccaforte ◽  
Salvatore di Franco ◽  
Alfonso Ruggiero ◽  
L. Neri ◽  
...  

The effects of the Si/H2 ratio on the growth of the epitaxial layer and on the epitaxial defects was studied in detail. A large increase of the growth rate has been observed with the increase of the silicon flux in the CVD reactor. Close to a Si/H2 ratio of 0.05 % silicon nucleation in the gas phase occurs producing a great amount of silicon particles that precipitate on the wafers. The epitaxial layers grown with a Si/H2 ratio of 0.03% show a low defect density and a low leakage current of the Schottky diodes realized on these wafers. For these diodes the DLTS spectra show thepresence of several peaks at 0.14, 0.75, 1.36 and 1.43 eV. For epitaxial layers grown with higher values of the Si/H2 ratio and then with an higher growth rate, the leakage current of the Schottky diodes increases considerably.


2007 ◽  
Vol 556-557 ◽  
pp. 9-12 ◽  
Author(s):  
Jung Doo Seo ◽  
Joon Ho An ◽  
Jung Gon Kim ◽  
Jung Kyu Kim ◽  
Myung Ok Kyun ◽  
...  

SiC single crystal ingots were prepared onto different seed material using sublimation PVT techniques and then their crystal quality was systematically compared. In this study, the conventional SiC seed material and the new SiC seed material with an inserted SiC epitaxial layer on a seed surface were used as a seed for SiC bulk growth. The inserted epitaxial layer was grown by a sublimation epitaxy method called the CST with a low growth rate of 2μm/h. N-type 2”-SiC single crystals exhibiting the polytype of 6H-SiC were successfully fabricated and carrier concentration levels of below 1017/cm3 were determined from the absorption spectrum and Hall measurements. The slightly higher growth rate and carrier concentration were obtained in SiC single crystal ingot grown on new SiC seed materials with the inserted epitaxial layer on the seed surface, maintaining the high quality.


Sign in / Sign up

Export Citation Format

Share Document