A Neutron Radiographic in vitro Examination of Soils

1975 ◽  
Vol 12 (1) ◽  
pp. 152-156 ◽  
Author(s):  
N. E. Wilson ◽  
A. A. Harms ◽  
J. J. Emery

A preliminary investigation has been conducted to explore the potential utilization of neutron radiography for the in vitro examination of soils contained within sampling tubes. Radiographic images obtained by such means have been found to provide indications of changes in soil type and details of soil structure which are distinct from images obtained by conventional X-ray radiographic means.

2020 ◽  
Author(s):  
Harry Harvey ◽  
Ricky Wildman ◽  
Sacha Mooney ◽  
Simon Avery

<p>Environmental perturbation, anthropogenic or otherwise, can have a profound effect on soil microbiota and essential biogeochemical processes. The general resistance and adaptation of yeasts and other fungi to stressors has been well studied in vitro however, the influence of key physical variables, such as how soil structure regulates fungal response to perturbation, is poorly understood. In this study, we developed an approach to manufacture soil macroaggregates that are characteristically similar to their natural counterpart (determined by X-ray CT) and with defined microbial composition. This new tool allowed us to examine the influence of soil aggregation on fungal stress response by manufacturing aggregates with yeast cells either within, or on, the aggregate surface. Environmental stressors including heavy metals, anoxia, and heat stress were applied to these aggregates to capture an array of environmental stressors and assay differences in survival between exo-and-endo aggregate cells. Results generated with this new tool indicate that the location of yeast cells in soil macroaggregates can impact on their survival, in a stressor- and time-dependent manner.</p>


Author(s):  
Ann Chidester Van Orden ◽  
John L. Chidester ◽  
Anna C. Fraker ◽  
Pei Sung

The influence of small variations in the composition on the corrosion behavior of Co-Cr-Mo alloys has been studied using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and electrochemical measurements. SEM and EDX data were correlated with data from in vitro corrosion measurements involving repassivation and also potentiostatic anodic polarization measurements. Specimens studied included the four alloys shown in Table 1. Corrosion tests were conducted in Hanks' physiological saline solution which has a pH of 7.4 and was held at a temperature of 37°C. Specimens were mechanically polished to a surface finish with 0.05 µm A1203, then exposed to the solution and anodically polarized at a rate of 0.006 v/min. All voltages were measured vs. the saturated calomel electrode (s.c.e.).. Specimens had breakdown potentials near 0.47V vs. s.c.e.


Author(s):  
Janet H. Woodward ◽  
D. E. Akin

Silicon (Si) is distributed throughout plant tissues, but its role in forages has not been clarified. Although Si has been suggested as an antiquality factor which limits the digestibility of structural carbohydrates, other research indicates that its presence in plants does not affect digestibility. We employed x-ray microanalysis to evaluate Si as an antiquality factor at specific sites of two cultivars of bermuda grass (Cynodon dactvlon (L.) Pers.). “Coastal” and “Tifton-78” were chosen for this study because previous work in our lab has shown that, although these two grasses are similar ultrastructurally, they differ in in vitro dry matter digestibility and in percent composition of Si.Two millimeter leaf sections of Tifton-7 8 (Tift-7 8) and Coastal (CBG) were incubated for 72 hr in 2.5% (w/v) cellulase in 0.05 M sodium acetate buffer, pH 5.0. For controls, sections were incubated in the sodium acetate buffer or were not treated.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


Author(s):  
Eva-Maria Mandelkow ◽  
Ron Milligan

Microtubules form part of the cytoskeleton of eukaryotic cells. They are hollow libers of about 25 nm diameter made up of 13 protofilaments, each of which consists of a chain of heterodimers of α-and β-tubulin. Microtubules can be assembled in vitro at 37°C in the presence of GTP which is hydrolyzed during the reaction, and they are disassembled at 4°C. In contrast to most other polymers microtubules show the behavior of “dynamic instability”, i.e. they can switch between phases of growth and phases of shrinkage, even at an overall steady state [1]. In certain conditions an entire solution can be synchronized, leading to autonomous oscillations in the degree of assembly which can be observed by X-ray scattering (Fig. 1), light scattering, or electron microscopy [2-5]. In addition such solutions are capable of generating spontaneous spatial patterns [6].In an earlier study we have analyzed the structure of microtubules and their cold-induced disassembly by cryo-EM [7]. One result was that disassembly takes place by loss of protofilament fragments (tubulin oligomers) which fray apart at the microtubule ends. We also looked at microtubule oscillations by time-resolved X-ray scattering and proposed a reaction scheme [4] which involves a cyclic interconversion of tubulin, microtubules, and oligomers (Fig. 2). The present study was undertaken to answer two questions: (a) What is the nature of the oscillations as seen by time-resolved cryo-EM? (b) Do microtubules disassemble by fraying protofilament fragments during oscillations at 37°C?


2015 ◽  
Vol 7 (2) ◽  
pp. 1428-1439
Author(s):  
Khurshed Alam ◽  
Md. Sayeedur Rahman ◽  
Md. Mostafizur Rahman ◽  
S. M. Azaharul Islam

A powerful non-destructive testing (NDT) technique is adopted to study the internal defects and elemental distribution/homogeneity and porosity of aerated brick and EPS aggregate poly brick samples. In the present study the internal defects like homogeneity, porosity, elemental distribution, EPS aggregate and aerator distributor in the test samples have been observed by the measurement of gray value/optical density of the neutron radiographic images of these samples. From this measurement it is found that the neutron intensity/optical density variation with the pixel distance of the AOI of the NR images in both expanded polystyrene (EPS) aggregate poly brick and aerated brick samples comply almost same in nature with respect to the whole AOI but individually each AOI shows different nature from one AOI to another and it confirms that the elemental distribution within a AOI is almost homogeneous. Finally it was concluded that homogeneity, elemental distribution in the EPS aggregate poly brick sample is better than that of the aerated brick sample. 


Author(s):  
Guru Kumar Dugganaboyana ◽  
Chethankumar Mukunda ◽  
Suresh Darshini Inakanally

In recent years, green nanotechnology-based approaches using plant materials have been accepted as an environmentally friendly and cost-effective approach with various biomedical applications. In the current study, AgNPs were synthesized using the seed extract of the Eugenia uniflora L. (E.uniflora). Characterization was done using UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The formation of AgNPs has confirmed through UV-Visible spectroscopy (at 466 nm) by the change of color owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of AgNPs was established. The functional group existing in seed of E.uniflora extract accountable for the reduction of Ag+ ion and the stabilization of AgNPs was investigated. The morphological structures and elemental composition was determined by SEM and EDX analysis. With the growing application of AgNPs in biomedical perspectives, the biosynthesized AgNPs were evaluated for their antibacterial and along with their antidiabetic potential. The results showed that AgNPs are extremely effective with potent antidiabetic potential at a very low concentration. It also exhibited potential antibacterial activity against the three tested human pathogenic bacteria. Overall, the results highlight the effectiveness and potential applications of AgNPs in biomedical fields such as in the treatment of acute illnesses as well as in drug formulation for treating various diseases such as cancer and diabetes. It could be concluded that E. uniflora seed extract AgNPs can be used efficiently for in vitro evaluation of their antibacterial and antidiabetic effects with potent biomedical applications.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Arun Kumar Jarathi ◽  
Suresh Gande ◽  
Viswaja Medipally ◽  
Ramesh Bomma

Background and the purpose of the study: Risedronate sodium inhibits osteoclast bone resorption and modulates bone metabolism. Risedronate has a high affinity for hydroxyapatite crystals in bone and is a potent antiresorptive agent. In the present investigation efforts were made to improve the bioavailability of risedronate sodium by increasing the residence time of the drug through sustained-release matrix capsule formulation via gastroretentive mechanism. Capsules were prepared by wet granulation technique. The influence of gel forming agents, amount of risedronate and total weight of capsules on physical properties, in vitro buoyancy, drug release, FTIR, DSC, X-ray studies were investigated. The release mechanisms were explored and explained by applying zero order, first order, Higuchi and Korsmeyer equations. The selected formulations were subjected to stability study at 40 °C/75% RH, 25 °C/60% RH for the period of three months. For all formulations, kinetics of drug release from capsules followed Higuchi’s square root of time kinetic treatment heralding diffusion as predominant mechanism of drug release. Formulation containing 25 mg HPMC K4M and 75 mg HPMC K100 LV (F-8) showed zero order release profile. There was no significant change in the selected formulation, when subjected to accelerated stability conditions over a period of three months. X-ray imaging in six healthy human volunteers revealed a mean gastric retention period of 5.60 ± 0.77 hrs for the selected formulation. Stable, sustained release effervescent floating capsules of risedronate sodium could be prepared by wet granulation technique.  


2018 ◽  
Vol 69 (7) ◽  
pp. 1714-1717
Author(s):  
Roxana Ionela Vasluianu ◽  
Norina Consuela Forna ◽  
Elena Raluca Baciu ◽  
Mirela Zaltariov ◽  
Lavinia Vasiliu ◽  
...  

The anti-erosion effect of fluoride on the enamel surface was investigated by ATR-FTIR, SEM and EDX techniques. Four extracted teeth (two incisors and two premolars) were initially bleached with carabamide peroxide and etched with ortho-phosphoric acid then fluoride treatment was applied. Significant differences in enamel composition and morphology were observed providing the effect of fluoride application in remineralization of teeth. Infrared spectroscopy was employed to probe the changes in enamel structure. Scanning electron microscopy/energy dispersive X-ray spectroscopy analysis revealed higher content in F of teeth enamel. Morphology changes revealed a re-mineralization of enamel surface after the treatment with fluoride gel.


Sign in / Sign up

Export Citation Format

Share Document