Behaviour of cemented tailings sands

1982 ◽  
Vol 19 (3) ◽  
pp. 289-295 ◽  
Author(s):  
R. J. Mitchell ◽  
B. C. Wong

Bulk pours of cemented tailings sands are used as ground control backfill in underground mines. This paper presents laboratory test data relating design factors, such as cement content, pour pulp density, and curing humidity, to backfill strength. Unconfined strengths were found to increase with increased cement content, increased pulp density, decreased porosity, and decreased curing humidity. Numerical relations between these factors are presented. Test data showing the behaviour of cemented tailings under triaxial compression are also presented. These data indicate that there is a relation between the unconfined strength and the strength envelope defined by c, [Formula: see text] parameters and that either strength can be used in design providing the confining stresses do not approach those required to cause cement bond crushing. Some practical considerations with regard to backfilling with cemented tailings are discussed. Keywords: cemented sand, tailings, strength, curing effects, mine backfill.

1995 ◽  
Vol 32 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Fanyu Zhu ◽  
Jack I. Clark ◽  
Michael J. Paulin

This paper presents the results of a laboratory study on the at-rest lateral stress and Ko of two artificially cemented sands. A modified oedometer ring was used to measure the lateral stress of cemented and uncemented sands. Test materials were No. 3 Ottawa sand and a marine sand with Portland cement. The specimens were prepared using the method of undercompaction to minimize the influence of specimen preparation on test results. The cement contents were 0, 0.5, 1.0, 2.0, 4.0, and 8.0% by the weight of dry sand. The water content of the specimens was 4% of the weight of dry sand and cement. When the sands were cured under zero confining pressure, the test results indicated the following: the at-rest lateral stress in cemented sands decreases significantly with increasing cement content; the relationship between the vertical and at-rest lateral stress is nonlinear and the value of Ko increases with increasing vertical stress; and the lateral stress decreases with sand density and curing period. When the specimens were cured under vertical stress, the value of Ko during the removal of vertical loading increased with both overconsolidation ratio and cement content. Stress history has a significant influence on the behaviour of at-rest lateral stress in cement sands. Key words : cemented sand, Ko, lateral stress, overconsolidation, stress history.


Author(s):  
Fernando Schnaid ◽  
Pedro D. M. Prietto ◽  
Nilo C. Consoli

2006 ◽  
Vol 43 (3) ◽  
pp. 294-309 ◽  
Author(s):  
Zahid Khan ◽  
Anwar Majid ◽  
Giovanni Cascante ◽  
D Jean Hutchinson ◽  
Parsa Pezeshkpour

The effect of variation in cement content, initial water content, void ratio, and curing time on wave velocity (low-strain property) and unconfined compressive strength (large-strain property) of a cemented sand is examined in this paper. The measured pulse velocity is compared with predictions made using empirical and analytical models, which are mostly based on the published results of resonant column tests. All specimens are made by mixing silica sand and gypsum cement (2.5–20% by weight) and tested under atmospheric pressure. The wave velocity reaches a maximum at optimum water content, and it is mostly affected by the number of cemented contacts; whereas compressive strength is governed not only by the number of contacts but also by the strength of contacts. Experimental relationships are developed for wave velocity and unconfined compressive strength as functions of cement content and void ratio. Available empirical models underpredict the wave velocity (60% on average), likely because of the effect of microfractures induced by confinement during the testing. Wave velocity is found to be a good indicator of cement content and unconfined compressive strength for the conditions of this study.Key words: wave velocity, low-strain stiffness, cemented sands, elastic moduli, unconfined compressive strength.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhirong Jia ◽  
Hongbo Zhao ◽  
Changxing Zhu

Uncertainty is an essential property of rock mechanics and engineering, which is of great significance to excavation, design, and control of rock engineering. In this study, an innovative framework of the reliability-based design was developed for the rock tunnel under uncertainty. The convergence-confinement method is used to characterize the interaction mechanism between the support structure and surrounding rock mass. Artificial bee colony (ABC) was adopted to solve the optimization problem in the reliability-based design. The probabilistic properties of rock strength and failure envelope were obtained based on the triaxial compression test data using the Bayesian method. The reliability of the tunnel and support structure was evaluated based on the abovementioned probabilistic properties of rock strength using the reliability analysis method. A circular tunnel was used to illustrate the developed framework, and the procedure was presented in detail. The time of rockbolt installed, the thickness of the shotcrete, length of rockbolt, circumferential space, and longitudinal space of rockbolt were determined and met the constraints of reliability index. Results show that the developed framework can consider the uncertainty for support design in the tunnel. It provides a good and promising way to support design considering the uncertainty of test data using the reliability-based design.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Cai Tan ◽  
Ming-dao Yuan ◽  
Yong-sheng Shi ◽  
Bing-sheng Zhou ◽  
Hao Li

Based on continuum damage mechanics and the assumption of volume invariance, a damage constitutive model of cemented sand under triaxial stress was established while considering residual strength. Statistical theory was then introduced into this model. Assuming that the microunit strength of cemented sand obeys a Weibull random distribution, an expression of microunit strength based on the Mohr–Coulomb criterion was derived. Additionally, a damage evolution equation and a statistical damage constitutive model of cemented sand under triaxial stress were established. In order to consider the nonlinear deformation and volume change in the initial pore compaction stage, the critical point reflecting the completion of the initial compaction stage was determined. This was done by applying the volume invariance assumption to the linear portion of the stress and strain curve and performing a coordinate transformation. The nonlinearity of the initial compaction stage was fitted by a quadratic function. A triaxial compression test of cemented sand was then carried out to verify this proposed method. The results show that the calculated values by the damage constitutive model fit well with the actual experimental values and that the calculated results can reflect the stress softening, residual strength, and initial compaction characteristics of cemented sand, which shows the rationality and feasibility of the model.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangfeng Lv ◽  
Hongyuan Zhou

The present paper is devoted to investigate the effects of waste polyester fiber fabric blocks on the strength and mechanical behavior of cemented sand. In the investigation, samples were prepared at four different percentages of waste polyester fiber fabric block content (0.0%, 0.5%, 1.0%, and 1.5% by weight of soil) and two different aspect ratios (2 : 1 and 3 : 1), and conventional triaxial compression tests were carried out after the curing period. The test results indicated that the addition of fibers increased peak and residual shear strengths of cemented sand and changed its brittle behavior to a more ductile one. As the fabric block content increased, the brittleness index and initial stiffness decreased, and the peak strain and internal friction angle increased. The optimal combination of the content and aspect ratio was determined to be 0.5% and 3 : 1. The integration of the fabric blocks with the cemented sand matrix was analyzed by using the scanning electron microscopy (SEM). It is found that the reinforcement effect is related to the bond strength and friction at the interface. The micromechanical properties of the fiber/matrix interface were influenced by the undulations between the fabric block components. In summary, this study presented a low-cost and environment-friendly method for reinforcing cement-stabilized sand.


Author(s):  
Anand J. Puppala ◽  
Yalcin B. Acar ◽  
Mehmet T. Tumay

Low strain dynamic shear modulus property is generally used to subclassify soil strata, determine elastic settlements under geotechnical structures, and characterize the dynamic nature of soils. Several methods to interpret the dynamic shear modulus of sands from in situ friction cone test results have been developed. These methods used calibration chamber test data of clean sands. Therefore, these methods are not valid for interpreting the shear modulus of cemented sands. Introduced here is an interpretation method to estimate the shear modulus of cemented sand. Thirty-seven friction cone penetration tests (CPTs) were conducted on artificially cemented sand specimens of relative densities ranging from 45 percent to 85 percent and confining pressures ranging from 100 to 300 kPa in a laboratory stress-strain-controlled calibration chamber. Cementation levels of 1 and 2 percent were used in preparing cemented specimens. Resonant column tests were also conducted on the same sand with identical cementation levels. The CPT and resonant column test data are used in developing an interpretation method that includes semiempirical correlations. Simple interpretation charts are also provided to directly estimate the low strain shear modulus of cemented sand from tip resistance, unconfined compressive strength, and relative density data. Comparisons between predictions of the proposed interpretation method and the present measured shear modulus test data indicate that the interpretation charts have provided reasonable predictions. The comparisons also indicate that the predicted results on clean sands obtained by different researchers are in agreement with each other.


Author(s):  
Celestino Valle ◽  
Beatriz I. Camacho ◽  
Kenneth H. Stokoe ◽  
Alan F. Rauch

Calcareous sand specimens were obtained from Campeche Bay in the southern Gulf of Mexico. The dynamic properties of these specimens were measured in resonant column and torsional shear (RCTS) tests, while the undrained shear strength was measured in unconsolidated-undrained (UU) triaxial compression tests. For weakly cemented, natural materials like this, it is difficult to obtain reliable properties from laboratory tests because sampling and handling of the soil specimens damages the particle cementation to an unknown degree. Artificially cemented specimens can be studied to better understand this problem. In this work, the strength and dynamic properties of artificially cemented sand were also measured using RCTS and UU tests. The artificially cemented specimens were formed by mixing uniform sand with a sodium silicate solution. The degree of cementation was varied by using different sodium silicate concentrations. This approach could be used to reproduce cemented test specimens in the laboratory with similar mechanical properties as cemented offshore soils. The results from this limited study show that the small-strain dynamic properties measured in the laboratory, and their variation with confining pressure, clearly identifies disturbance in the calcareous soils.


2021 ◽  
Author(s):  
Sina Karimi ◽  
Hamed Farshbaf Aghajani

Abstract This paper aims to achieve a specific type of cemented sand-gravel mixtures with low permeability to implement in the impervious zone of hardfill dams. To this end, various mixtures are prepared by blending two native soils of sand and gravel with different amounts of kaolinite or bentonite additives in presence of various cement content. The compaction properties, uniaxial compressive strength, permeability and scanning electron microscope (SEM) images of mixtures are measured. According to the results, the cemented mixture containing 10% of kaolinite additive regardless of native soil type exhibits the maximum strength. However, the bentonite disturbs the cement hydration in the mixture, and the strength of mixtures especially with high cement content decreases with increasing the bentonite content. The permeability of mixtures is related to the amount of cement and fine additive in the mixture. The permeability of both cemented sand and gravel mixtures decreases with increasing the bentonite additive. However, the kaolinite additive has a limited influence on the permeability of cemented gravel mixtures. The lowest permeability is achieved in the mixture involving the higher amount of bentonite (with a weight ratio of 30%) in presence of adequate cement.


Sign in / Sign up

Export Citation Format

Share Document