Electrothermal coupling analysis and experimental verification for wirebond devices

2018 ◽  
Vol 42 (3) ◽  
pp. 268-279
Author(s):  
Chin-Li Kao ◽  
Tei-Chen Chen

The thermal performance of a powered wirebond device with package level and board level test specimens was investigated by both analytical and experiment methods. The effects of thickness and thermal conductivity of the molding compound and heat spreader attached to the top surface of the molding compound on the performance of the Au wire and silicon die were modeled and evaluated by three-dimensional electrothermal coupling analysis. An advanced quad flat no-lead (QFN) sample was selected to experimentally measure the maximum allowable current in Au wire for packages either with or without molding compound. Two failure modes, namely the fusing of the wire and the decomposition temperature of the molding compound, were established in analysis. A board level test specimen with a thermal test die was also employed to measure the real time package thermal performance. The major achievement of this work is in the complete combination of modeling, experiment, and optimization for thermal performance evaluation purpose of a powered wirebond device. Results of this physical analysis can provide a reliable and useful guide to estimate the maximum allowable currents in Au wires for a wirebond device under practical application conditions.

Author(s):  
Anshul Shrivastava ◽  
Ahmed Amin ◽  
Bhanu Sood ◽  
Michael Azarian ◽  
Michael Pecht ◽  
...  

Abstract Thick film resistors are widely used in consumer and industrial products such as timers, motor controls and a broad range of high performance electronic equipment. This article provides information on failures due to copper dendrite growth, silver migration, sulfur atmosphere corrosion, variation of temperature, and crack due to molding compound mechanisms. It presents case studies in which a physical analysis plan was developed and executed to investigate these sites of interest on as-manufactured and failed thick film power resistors. The analysis techniques included X-ray inspection, cross-sectioning, decapsulation, and optical and environmental scanning electron microscopy analysis. A table illustrates different failure modes and mechanisms for thick film resistors, and also potential application and manufacturing factors that cause failure mechanisms, which then describe the failure modes. The article is concluded that by preventing the failure of thick film resistors, printed circuit boards can be kept in service for their full lifetime.


Author(s):  
Frederick Felt ◽  
Lee Knauss ◽  
Anders Gilbertson ◽  
Antonio Orozco

Abstract The need to miniaturize in the electronics industry is driving smaller form factors, and resulting in complex packaging innovations such as structures with multiple devices stacked inside a three dimensional package. These structures present a challenge for non-destructive fault isolation. Two such modules recently exhibited failures on the NASA Goddard Space Flight Center Solar Dynamic Observatory (SDO) during board-level testing. Each module consisted of eight vertically-stacked mini-boards, each mini-board with a single EEPROM microcircuit and capacitor, and connected by external gold metallization to module pins. Both failed modules exhibited low-resistance shorts between multiple pins. The orthogonal structure of the module prompted the use of magnetic current imaging (MCI) in three planes in order to construct an internal three-dimensional current path for each of the failed modules. Magnetic current imaging is able to “look through” non-magnetic, or de-gaussed packaging materials, allowing global imaging without physical deprocessing of the stacked EEPROM modules, in order to construct the internal current path and localize defects. To our knowledge, this is the first time that this has been done. Following global isolation of the defects, two types of magnetic sensors were used in parallel with limited deprocessing in order to more precisely characterize suspect failure locations before actually physically exposing the defects. This paper will show the process for using magnetic current imaging with both SQUID and magnetoresistive (GMR) sensors to isolate defects in two stacked EEPROM packages along with the final physical analysis of the defects. The failure analysis found that these devices were damaged by external heat, possibly during oven pre-conditioning or hot air soldering onto the board. The manufacturer, 3-D Plus, was not implicated in the failure.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
Yifan Li ◽  
Huaiyuan Gu ◽  
Martyn Pavier ◽  
Harry Coules

Octet-truss lattice structures can be used for lightweight structural applications due to their high strength-to-density ratio. In this research, octet-truss lattice specimens were fabricated by stereolithography additive manufacturing with a photopolymer resin. The mechanical properties of this structure have been examined in three orthogonal orientations under the compressive load. Detailed comparison and description were carried out on deformation mechanisms and failure modes in different lattice orientations. Finite element models using both beam elements and three-dimensional solid elements were used to simulate the compressive response of this structure. Both the load reaction and collapse modes obtained in simulations were compared with test results. Our results indicate that three-dimensional continuum element models are required to accurately capture the behaviour of real trusses, taking into account the effects of finite-sized beams and joints.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


2020 ◽  
Vol 319 ◽  
pp. 02004
Author(s):  
Muhammad Akif Rahman ◽  
Md Badrath Tamam ◽  
Md Sadman Faruque ◽  
A.K.M. Monjur Morshed

In this paper a numerical analysis of three-dimensional laminar flow through rectangular channel heat sinks of different geometric configuration is presented and a comparison of thermal performance among the heat sinks is discussed. Liquid water was used as coolant in the aluminum made heat sink with a glass cover above it. The aspect ratio (section height to width) of rectangular channels of the mini-channel heat sink was 0.33. A heat flux of 20 W/cm2 was continuously applied at the bottom of the channel with different inlet velocity for Reynold’s number ranging from 150 to 1044. Interconnectors and obstacles at different positions and numbers inside the channel were introduced in order to enhance the thermal performance. These modifications cause secondary flow between the parallel channels and the obstacles disrupt the boundary layer formation of the flow inside the channel which leads to the increase in heat transfer rate. Finally, Nusselt number, overall thermal resistance and maximum temperature of the heat sink were calculated to compare the performances of the modified heat sinks with the conventional mini channel heat sink and it was observed that the heat sink with both interconnectors and obstacles enhanced the thermal performance more significantly than other configurations. A maximum of 36% increase in Nusselt number was observed (for Re =1044).


Sign in / Sign up

Export Citation Format

Share Document