Wallach rearrangement of azoxypyridines and azoxypyridine N-oxides — Charge distributions and dramatic reactivity differences

2008 ◽  
Vol 86 (4) ◽  
pp. 298-304 ◽  
Author(s):  
Erwin Buncel ◽  
Sam-Rok Keum ◽  
Srinivasan Rajagopal ◽  
Eric Kiepek ◽  
Robin A Cox

Extension of our studies of the generic Wallach rearrangement (of azoxybenzene to 4-hydroxyazobenzene) to the heteroaromatic series (azoxypyridines and axoxypyridine N-oxides) has revealed some dramatic reactivity differences, particularly for the α and β compounds. We have studied the 3-isomers and the 4-isomers in each series, each with α and β forms, eight compounds in all, in the 100 wt% sulfuric acid region of acidity. In those cases in which a product could be observed, the α and β isomers both give the same one, the corresponding 4′-hydroxyazo compounds. All the compounds react much more slowly than does azoxybenzene itself, presumably because of the extra positive charge present in the substrates, but the β isomers have half-lives of seconds and the α isomers half-lives of hundreds of hours in the 100 wt% H2SO4 acidity region. The α compounds have measurable pKBH+ values, but the β compounds do not, exhibiting only a medium effect in the acidity region in which the α compounds protonate. This means that for the β compounds, the protonated intermediates must be much less stable and the postulated reaction intermediates must be much more stable than for the α compounds. To clarify this, we have obtained Mulliken charge distributions for the various species concerned, calculating the charge carried by each half of the molecule, larger charge separations being taken to indicate lesser stability. As far as we can establish, this is the first time that this technique has been used to indicate the stabilities of carbocationic species.Key words: azoxypyridines, azoxypyridine N-oxides, Wallach rearrangement, excess acidity, basicities, theoretical calculations, charge distributions, reactivities.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


Author(s):  
Ibon Alkorta ◽  
José Elguero

AbstractThis communication gives an overview of the relationships between four reactions that although related were not always perceived as such: SN2, Walden, Finkelstein, and Menshutkin. Binary interactions (SN2 & Walden, SN2 & Menshutkin, SN2 & Finkelstein, Walden & Menshutkin, Walden & Finkelstein, Menshutkin & Finkelstein) were reported. Carbon, silicon, nitrogen, and phosphorus as central atoms and fluorides, chlorides, bromides, and iodides as lateral atoms were considered. Theoretical calculations provide Gibbs free energies that were analyzed with linear models to obtain the halide contributions. The M06-2x DFT computational method and the 6-311++G(d,p) basis set have been used for all atoms except for iodine where the effective core potential def2-TZVP basis set was used. Concerning the central atom pairs, carbon/silicon vs. nitrogen/phosphorus, we reported here for the first time that the effect of valence expansion was known for Si but not for P. Concerning the lateral halogen atoms, some empirical models including the interaction between F and I as entering and leaving groups explain the Gibbs free energies.


1970 ◽  
Vol 48 (14) ◽  
pp. 1664-1674 ◽  
Author(s):  
D. W. Lepard

This paper presents a method for calculating the relative intensities and Raman shifts of the rotational structure in electronic Raman spectra of diatomic molecules. The method is exact in the sense that the wave functions used for the calculations may belong to any intermediate case of Hund's coupling schemes. Using this method, theoretical calculations of the pure rotational and electronic Raman spectrum of NO, and the pure rotational Raman spectrum of O2, are presented. Although a calculated stick spectrum for NO was previously shown by Fast et al., the details of this calculation are given here for the first time.


Synlett ◽  
2017 ◽  
Vol 29 (10) ◽  
pp. 1314-1318 ◽  
Author(s):  
Charles Diesendruck ◽  
Sinai Aharonovich ◽  
Nansi Gjineci ◽  
Dario Dekel

Tetraaryl ammonium salts are a synthetic challenge, since there is no general method for the arylation of triaryl amines. Contrary to other quaternary ammonium salts, tetraaryl ammonium salts should be very chemically stable. The ipso carbons are not very electrophilic, since the positive charge is distributed throughout the pi systems and they have no acidic β hydrogens. Here we demonstrate a simple approach to N,N-diphenyl carbazolium salts using only three synthetic steps, allowing for an easy production of these salts in large amounts and in a relatively short time. In addition, we study the Cu(I) catalyzed multi-arylation of 2,2’-diaminobiphenyl, focusing on the regioselectivity of each step. Finally, we characterize, for the first time, the solid state structure of a tetraaryl ammonium salt.


2010 ◽  
Vol 46 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Z. Bangwei ◽  
S. Xiaolin ◽  
L. Shuzhi ◽  
Y. Xiaojian ◽  
X. Haowen

There have been no theoretical calculations of the mixing enthalpies for group B metal alloy systems using the famous Miedema theory or from first principles. Therefore such systematic calculations for the 11 group IIB?IVB and IIB?VB binary alloy systems are performed for the first time using a subregular model. The results show that the agreement between the calculations and experimental data is pretty good and could be accepted from the theoretical or experimental points of view. It can be concluded from the results that the subregular model can be used for calculating the mixing enthalpies of the group B alloy systems, at least for the IIB?IVB and IIB?VB alloy systems.


1970 ◽  
Vol 48 (2) ◽  
pp. 377-382 ◽  
Author(s):  
E. Buncel ◽  
W. M. J. Strachan

Study of the acid-catalyzed Wallach rearrangement of azoxybenzene is extended into the 100% H2SO4 region. The rate of formation of 4-hydroxyazobenzene can be followed spectrally in a straight-forward manner until close to 99% H2SO4, but in higher acidities sulfonation of this product becomes kinetically important. The advent of second equilibrium protonations of 4-hydroxyazobenzene and of 4-hydroxyazobenzene-4′-slfonic acid further complicate the azoxybenzene rearrangement as followed spectrally. Above 100% H2SO4 a second sulfonation is also observed. A method is given for dissecting the rate data for the primary rearrangement process from the first of the sulfonation reactions.The rate of the azoxybenzene rearrangement is observed to increase continuously up to 99.99% H2SO4 (the upper limit of the present kinetic method). This suggests that the second proton transfer step to azoxybenzene is rate-determining and not an equilibrium process. These results permit a clarification of a previously proposed mechanism (1).


1974 ◽  
Vol 52 (7) ◽  
pp. 1098-1107 ◽  
Author(s):  
Keith Yates ◽  
Robert A. McClelland

The free energies, enthalpies, and entropies of transfer for a series of neutral aromatic solutes from water to aqueous sulfuric and perchloric acids have been determined by measuring the "medium effect" activity coefficient over a range of temperatures. The more negative free energies of transfer (salting-in) into perchloric acid relative to sulfuric acid are due to more favorable entropy terms, although enthalpies of transfer to perchloric acid solutions are similar to or more positive than those for sulfuric acid solutions. The generally observed salting-in caused by substitution of a nitro group in a neutral solute (the nitro-group effect) results from a more favorable enthalpy of transfer, with a small amount of compensation from the entropy term. A brief discussion of the solute–solvent interactions responsible for these observations is presented.


2012 ◽  
Vol 15 ◽  
pp. 129-139 ◽  
Author(s):  
A.K. ALEKSANYAN ◽  
A.K. MINASYAN ◽  
R.S. HAKOBYAN

Laser beam heating the medium induces instability in the liquid crystal (LC) cell. This instability in conjunction with influence of gravitational force results in convective motions in the cell. In this paper theoretical modeling for studying convection induced by Gaussian laser beam in nematic LC homeotrop and planar cells is presented for the first time. Velocity field and LC director distribution are obtained for various light powers and LC cell sizes by solving Navier-Stokes, heat transfer and director equations simultaneously. The modeling allows us to solve the problems of convections induced by Gaussian laser beam due to Rayleigh-Benard and Marangoni mechanisms as well. There is a good qualitative agreement between theoretical calculations and prior experimental results. The possibility of control and stability of convective motions are studied. Instabilities of the Benard cells are of thermal origin because the Prandtl number for the medium under study is considerably larger than unity.


2013 ◽  
Vol 774-776 ◽  
pp. 811-815 ◽  
Author(s):  
Jian Ma

V3+ions doped YAG crystals were grown using the Czochralski method in a highly pure argon atmosphere. The transmission spectrum of trivalent vanadium in YAG crystal has been measured at room temperature. Eight bands were observed in which two bands centered at 690nm (14493cm-1) and 1490nm (6711cm-1) are reported for the first time. By using the crystal-field theory and introducing the average covalent factor model, we also presented the theoretical calculations of the energy level splitting of tetrahedrally coordinated V3+impurity systems in YAG crystal. These calculation results are in good agreement with the optical experiment data.


2007 ◽  
Vol 22 (02n03) ◽  
pp. 608-611
Author(s):  
◽  
YOUNG JIN KIM

Study of strange particles produced at (sub)threshold energies in nucleus-nucleus collisions can deliver insights into fundamental questions about the in-medium properties of hadrons in dense baryonic matter. Many theoretical calculations for the production and propagation of strangeness at SIS energies lead to various predictions concerning the existence and the magnitude of in-medium effects for strange particles in nuclear matter. FOPI measured the flow of strange particles in Ni + Ni collisions at 1.93A GeV and the results are compared with transport models which are favorable to in-medium effect.


Sign in / Sign up

Export Citation Format

Share Document