Unusual behavior of the conductivity of LiNO3 in tert-butanol: ion clustering or ion-pair aggregation

1995 ◽  
Vol 73 (12) ◽  
pp. 2131-2136 ◽  
Author(s):  
Yixing Zhao ◽  
Gordon R. Freeman

The electrical conductance of LiNO3 in tert-butanol–water mixed solvents changes gradually from "normal" in pure water to "abnormal" in pure tert-butanol. In water the measured specific conductance increases with increase of temperature, and in tert-butanol the conductance decreases with increase of temperature. In pure tert-butanol, the electrical conductances of NH4ClO4 and LiClO4 increase with the salt concentration and temperature at lower temperatures, but decrease at higher temperatures. The molar conductivity Λ0(10−4 S m2 mol−1) in tert-butanol at 300 K is 5.0 for NH4ClO4 and 4.0 for LiClO4. Both activation energies EΛ0 are 17 kJ mol−1, which gives an unusual correlation between Λ0 and viscosity η(mPa s): [Formula: see text] The values of Λ0 for NH4NO3 and LiNO3 in tert-butanol could not be measured, because ion aggregation is significant even at the lowest concentrations required to obtain conductances sufficiently above that of the solvent. The measured temperature coefficient of LiNO3 conductance in tert-butanol is negative. Ion clustering of nitrate salts is attributed to poor solvation of the planar NO3− ions by the globular tert-butanol molecules. Ion aggregation in tert-butanol increases with increasing T, due to the relatively rapid decrease of the value of εT. Corrections are listed for reaction kinetics parameters for nitrate salts in pure tert-butanol solvent reported in Can. J. Chem. 73, 392 (1995). Keywords: tert-butanol, ion-pair aggregation, lithium nitrate, electrical conductance, solvent effects.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bijaya B. Karki ◽  
Dipta B. Ghosh ◽  
Shun-ichiro Karato

AbstractWater (H2O) as one of the most abundant fluids present in Earth plays crucial role in the generation and transport of magmas in the interior. Though hydrous silicate melts have been studied extensively, the experimental data are confined to relatively low pressures and the computational results are still rare. Moreover, these studies imply large differences in the way water influences the physical properties of silicate magmas, such as density and electrical conductivity. Here, we investigate the equation of state, speciation, and transport properties of water dissolved in Mg1−xFexSiO3 and Mg2(1−x)Fe2xSiO4 melts (for x = 0 and 0.25) as well as in its bulk (pure) fluid state over the entire mantle pressure regime at 2000–4000 K using first-principles molecular dynamics. The simulation results allow us to constrain the partial molar volume of the water component in melts along with the molar volume of pure water. The predicted volume of silicate melt + water solution is negative at low pressures and becomes almost zero above 15 GPa. Consequently, the hydrous component tends to lower the melt density to similar extent over much of the mantle pressure regime irrespective of composition. Our results also show that hydrogen diffuses fast in silicate melts and enhances the melt electrical conductivity in a way that differs from electrical conduction in the bulk water. The speciation of the water component varies considerably from the bulk water structure as well. Water is dissolved in melts mostly as hydroxyls at low pressure and as –O–H–O–, –O–H–O–H– and other extended species with increasing pressure. On the other hand, the pure water behaves as a molecular fluid below 15 GPa, gradually becoming a dissociated fluid with further compression. On the basis of modeled density and conductivity results, we suggest that partial melts containing a few percent of water may be gravitationally trapped both above and below the upper mantle-transition region. Moreover, such hydrous melts can give rise to detectable electrical conductance by means of electromagnetic sounding observations.


1956 ◽  
Vol 34 (9) ◽  
pp. 1232-1242 ◽  
Author(s):  
A. N. Campbell ◽  
G. H. Debus

The conductances of solutions of lithium nitrate in 30, 70, and 100 weight per cent ethyl alcohol have been determined at concentrations ranging from 0.01 molar up to saturation, at 25 °C. The densities and viscosities of these solutions have also been determined. The data have been compared with the calculated conductances obtained from the Wishaw–Stokes equation. The agreement is fairly good up to, say, 2 M, for all solvents except absolute alcohol. In the latter solvent there is no value of å, the distance of closest approach, which will give consistent values of the equivalent conductance. In passing from pure water to pure alcohol, the value of å increases progressively and this we attribute to a change in the solvation of the lithium ion from water molecules to alcohol molecules. Some further calculations incline us to the view that the nitrate ion, as well as the lithium ion, is solvated to some extent, at least in alcohol.


2019 ◽  
Vol 31 (12) ◽  
pp. 2719-2724
Author(s):  
Sailaja Muchipali ◽  
Ranjan Kumar Pradhan ◽  
Priyaranjan Mohapatra ◽  
Braja B. Nanda

The intermolecular free-length of 1-butyl-2,3-dimethylimidazolium chloride [bdmim]Cl in pure water as well as in tetra-n-butyl ammonium bromide (TBAB) + water at different concentrations of solute and at T = (298.15 to 313.15) K have been evaluated by making use of ultrasonic and thermoacoustical parameters followed by a comparative study. To accomplish this objective, thermoacoustical parameters for the above said solutions have been calculated. These parameters have been used to determine intermolecular free-length (Lf) for the solutions under study. The values of Lf obtained by thermoacoustical approach were tallied with the values obtained by well-known ultrasonic method (Schaaffs method). To the best of our understanding, this study is an innovative attempt in the determination of inter-molecular free-length present in the investigated solutions by making use of ultrasonic approach.


2009 ◽  
Vol 38 (7) ◽  
pp. 827-841 ◽  
Author(s):  
Ariel A. Chialvo ◽  
Miroslaw S. Gruszkiewicz ◽  
J. Michael Simonson ◽  
Donald A. Palmer ◽  
David R. Cole

1964 ◽  
Vol 42 (8) ◽  
pp. 1984-1995 ◽  
Author(s):  
A. N. Campbell ◽  
D. F. Williams

The electrical conductance and its temperature dependence of molten lithium chlorate have been determined. Similar results have been obtained for lithium chlorate melts containing small quantities of methyl alcohol, propyl alcohol, lithium nitrate, lithium hydroxide, and water.The results obtained, taken in conjunction with the results of previous work, all indicate that the melt is complex. There is probably considerable association and this is especially evident slightly above the melting point: at temperatures in this region the temperature change of the properties of the lithium chlorate melt is greatest.The activation energy of conductance is approximately the same as the activation energy of viscous flow, for pure lithium chlorate melt and for mixtures of lithium chlorate with lithium nitrate. From this it appears that the melt constituents are not principally the simple ions, but that some form of cohesion exists between the simple constituents of the melt.The addition of water to the lithium chlorate melt causes the melt properties to alter considerably, especially the transport properties, viscosity and conductance. It is suggested that these changes may in part be due to a breakup of the structural entities of the pure melt, though the increase in electrical conductance cannot be completely explained in this way. A cryoscopic investigation seems to indicate that water is •not present as such in the melt.


1978 ◽  
Vol 56 (15) ◽  
pp. 2053-2057 ◽  
Author(s):  
El-Hussieny M. Diefallah ◽  
A. M. El-Nadi

The kinetics of the alkaline decarboxylation of trichloroacetate ion in ethanol–water solutions have been studied over the temperature range 35.0 to 70.0 °C. The rate of reaction is first order with respect to the trichloroacetate ion and is independent of the concentration of the hydroxide ion. The reactivity is enhanced by increasing the concentration of ethanol in the water–ethanol solutions and the rate of reaction varies with ethanol addition in a nonlinear manner. The rate of reaction increases with the reciprocal of the dielectric constant of the medium and the plot of log k vs. 1/D is approximately linear for solvent mixtures with less than about 0.7 water mole fraction but is strongly curved towards the pure water end. The activation parameters for the reaction show a regular increase in the solvent composition range 0.3 to 1.0 water mole fraction. The results are discussed in terms of the influence of solvent internal pressure and polarity on reactivity and of the increased amount of hydrogen-bonded structure in the water-rich solutions.


Sign in / Sign up

Export Citation Format

Share Document