Oxidative stress response of Mycosphaerella fijiensis, the causal agent of black leaf streak disease in banana plants, to hydrogen peroxide and paraquat

2009 ◽  
Vol 55 (7) ◽  
pp. 887-894 ◽  
Author(s):  
Miguel J. Beltrán-García ◽  
Gilberto Manzo-Sanchez ◽  
Salvador Guzmán-González ◽  
Carlos Arias-Castro ◽  
Martha Rodríguez-Mendiola ◽  
...  

Mycosphaerella fijiensis causes black leaf streak disease in banana and plantain. This fungus is usually attacked by reactive oxygen species secreted by the plant or during exposure to fungicide, however, little is known about the antioxidant response of the fungus. In this study, mycelia were observed to totally decompose 30 mmol/L of hydrogen peroxide (H2O2) within 120 min, liberating oxygen bubbles, and also to survive in concentrations as high as 100 mmol/L H2O2. The oxidative stress responses to H2O2, paraquat, and hydroquinone were characterized in terms of the activities of catalase and superoxide dismutase (SOD). Two active catalase bands were seen in native PAGE induced by H2O2. Band I had monofunctional activity and band II had bifunctional catalase–peroxidase activity. Two isozymes of SOD, distinguishable by their cyanide sensitivity, were found; CuZnSOD was the main one. The combination of H2O2 and 3-aminotriazole reduced the accumulation of biomass up to 40% compared with exposure to H2O2 alone, suggesting that catalase is important for the rapid decomposition of H2O2 and has a direct bearing on cell viability. The results also suggest that the superoxide anion formed through the redox of paraquat and hydroquinone has a greater effect than H2O2 on the cellular viability of M. fijiensis.

2011 ◽  
Vol 38 (7) ◽  
pp. 624 ◽  
Author(s):  
Carmelina Spanò ◽  
Stefania Bottega ◽  
Roberto Lorenzi ◽  
Isa Grilli

In the present work we studied oxidative stress as an important cause of seed deterioration during ageing in embryos from durum wheat grains stored at room temperature and at low temperature (10°C). The protective role of low temperature on seed viability was confirmed. The increase of hydrogen peroxide content during dry storage was strongly correlated with the decrease of germinability. Ascorbate and glutathione showed a good correlation with grain germinability and significantly increased upon imbibition, in particular in embryos from viable grains. Ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX) and catalase (CAT) were studied quantitatively (enzymatic assays). APX, GR, and GPX were also studied qualitatively by native PAGE. The enzymes were active in dry, still viable, embryos whereas no activity was detected in non-viable embryos. With the exception of APX, all enzymatic activities decreased upon imbibition. The study of grains stored in different conditions indicated a negative correlation between the efficiency of the antioxidant enzymatic machinery and the age of the grain. The differences detected in differently stored materials confirmed that both germination parameters and the length of storage period are important in determining grain condition.


Poljoprivreda ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 15-24
Author(s):  
Magdalena Matić ◽  
◽  
Rosemary Vuković ◽  
Karolina Vrandečić ◽  
Ivna Štolfa Čamagajevac ◽  
...  

During cultivation, wheat is exposed to several abiotic and/or biotic stress conditions that may adversely impact the wheat yield and quality. The impact of abiotic stress caused by nitrogen deficiency and biotic stress caused by phytopathogenic fungus Fusarium culmorum on biomarkers of oxidative stress in the flag leaf of nine winter wheat varieties (Ficko, U-1, Galloper, BC Mandica, BC Opsesija, Ingenio, Isengrain, Felix, and Bezostaya-1) was analyzed in this study. Hydrogen peroxide concentration and lipid peroxidation level were measured as indicators of oxidative stress, while the antioxidant response was determined by measuring the concentration of phenolic compounds and activities of antioxidant enzymes. Wheat variety and nitrogen treatment had a significant effect on all examined biomarkers of oxidative stress in the flag leaf, while the impact of Fusarium treatment was less pronounced. The most significant impact on the measured stress biomarkers had a low nitrogen level, which mainly increased hydrogen peroxide concentration and lipid peroxidation level and decreased activities of antioxidant enzymes in most varieties. The obtained results were discussed and compared with the previous study in which biochemical analyzes were performed on the wheat spike. There was no significant strong correlation between flag leaf and spike response in the measured parameters, which, in addition to the variety-specific response, also indicates a tissue-specific antioxidant response.


2010 ◽  
pp. no-no ◽  
Author(s):  
Aifen Zhou ◽  
Zhili He ◽  
Alyssa M. Redding-Johanson ◽  
Aindrila Mukhopadhyay ◽  
Christopher L. Hemme ◽  
...  

2000 ◽  
Vol 68 (7) ◽  
pp. 3861-3866 ◽  
Author(s):  
Jeong-a Kim ◽  
Zengyu Sha ◽  
John E. Mayfield

ABSTRACT All aerobic organisms have mechanisms that protect against oxidative compounds. Catalase, peroxidase, superoxide dismutase, glutathione, and thioredoxin are widely distributed in many taxa and constitute elements of a nearly ubiquitous antioxidant metabolic strategy. Interestingly, the regulatory mechanisms that control these elements are rather different depending on the nature of the oxidative stress and the organism. Catalase is well documented to play an important role in protecting cells from oxidative stress. In particular, pathogenic bacteria seem to use this enzyme as a defensive tool against attack by the host. To investigate the significance of catalase in hostile environments, we made catalase deletion mutations in two different B. abortus strains and used two-dimensional gel analysis, survival tests, and adaptation experiments to explore the behavior and role of catalase under several oxidative stress conditions. These studies show that B. abortus strains that do not express catalase activity exhibit increased sensitivity to hydrogen peroxide. We also demonstrate that catalase expression is regulated in this species, and that preexposure to a sublethal concentration of hydrogen peroxide allows B. abortus to adapt so as to survive subsequent exposure to higher concentrations of hydrogen peroxide.


2005 ◽  
Vol 4 (8) ◽  
pp. 1396-1402 ◽  
Author(s):  
Miguel A. Rodríguez-Gabriel ◽  
Paul Russell

ABSTRACT Exposure to certain metal and metalloid species, such as arsenic, cadmium, chromium, and nickel, has been associated with an increased risk of cancer in humans. The biological effects of these metals are thought to result from induction of reactive oxygen species (ROS) and inhibition of DNA repair enzymes, although alterations in signal transduction pathways may also be involved in tumor development. To better understand metal toxicity and its connection to ROS, we have compared the effects of arsenite and hydrogen peroxide in wild-type and mutant strains of the fission yeast Schizosaccharomyces pombe. An atf1Δ pap1Δ strain, which is defective in two transcription factors that control stress responses, is extremely sensitive to hydrogen peroxide but not to arsenite. A strain that lacks the transcription factor Zip1 has the opposite relationship. Spc1 (Sty1) mitogen-activated protein kinase (MAPK), a homologue of mammalian p38 MAPK, and the upstream MAPK kinase (MAPKK) Wis1 are essential for survival of both arsenite and hydrogen peroxide. Inactivation of two MAPKK kinases, Win1 and Wis4, almost completely eliminates Spc1 activation by arsenite, yet these cells survive arsenite treatment. The two-component phosphorelay protein Mcs4, which acts upstream of Win1 and Wis4 and is required for Spc1 activation in response to oxidative stress, is not required for Spc1 activation in response to arsenite. We conclude that the toxic effects of arsenic are not strongly connected to oxidative stress and that although Spc1 is activated by arsenic exposure, the basal activity of Spc1 is largely sufficient for the survival of arsenic.


2008 ◽  
Vol 19 (1) ◽  
pp. 308-317 ◽  
Author(s):  
Dongrong Chen ◽  
Caroline R.M. Wilkinson ◽  
Stephen Watt ◽  
Christopher J. Penkett ◽  
W. Mark Toone ◽  
...  

Cellular protection against oxidative damage is relevant to ageing and numerous diseases. We analyzed the diversity of genome-wide gene expression programs and their regulation in response to various types and doses of oxidants in Schizosaccharomyces pombe. A small core gene set, regulated by the AP-1–like factor Pap1p and the two-component regulator Prr1p, was universally induced irrespective of oxidant and dose. Strong oxidative stresses led to a much larger transcriptional response. The mitogen-activated protein kinase (MAPK) Sty1p and the bZIP factor Atf1p were critical for the response to hydrogen peroxide. A newly identified zinc-finger protein, Hsr1p, is uniquely regulated by all three major regulatory systems (Sty1p-Atf1p, Pap1p, and Prr1p) and in turn globally supports gene expression in response to hydrogen peroxide. Although the overall transcriptional responses to hydrogen peroxide and t-butylhydroperoxide were similar, to our surprise, Sty1p and Atf1p were less critical for the response to the latter. Instead, another MAPK, Pmk1p, was involved in surviving this stress, although Pmk1p played only a minor role in regulating the transcriptional response. These data reveal a considerable plasticity and differential control of regulatory pathways in distinct oxidative stress conditions, providing both specificity and backup for protection from oxidative damage.


2007 ◽  
Vol 97 (8) ◽  
pp. 916-929 ◽  
Author(s):  
Bruno Giuliano Garisto Donzelli ◽  
Alice C. L. Churchill

We describe a method to evaluate the virulence of Mycosphaerella fijiensis, the causal agent of black leaf streak disease (BLSD) of banana and plantain. The method is based on the delivery of weighed slurries of fragmented mycelia by camel's hair brush to 5-by-5-cm areas on the abaxial surface of banana leaf blades. Reliable BLSD development was attained in an environmental growth chamber with stringent lighting and humidity controls. By localizing inoculum onto small areas of large leaves, we achieved a dramatic increase in the number of strains that can be tested on each leaf and plant, which is critical for comparing the virulence of numerous strains concurrently. Image analysis software was used to measure the percentage of each inoculated leaf section showing BLSD symptoms over time. We demonstrated that the level of disease of four isolates was correlated with the weight of the mycelium applied and relatively insensitive to the degree of fragmentation of hyphae. This is the first report demonstrating that weighed mycelial inoculum, combined with image analysis software to measure disease severity, can be used to quantitatively assess the virulence of M. fijiensis under rigorously controlled environmental conditions.


2014 ◽  
Vol 3 (3) ◽  
pp. 204-217
Author(s):  
AMARI Ler-N'Ogn Dadé Georges Elisée ◽  
CHERIF Mamadou ◽  
Hilaire Tanoh Kouakou ◽  
CAMARA Brahima ◽  
KONÉ Daouda

Salicylic acid and its analogues are considered the most important compounds which can be activated a systemic acquired resistance (SAR) in plants. The disadvantages and limits related to the usual methods in particular fungicide spray to the control of black leaf streak disease (BLSD) require research of approaches more respectful of the environment for this disease management such as the use of SAR inducers. The effects of Salicylic acid (SA) and Acibenzolar-S-methyl (ASM) on the interaction of two susceptible cultivars of banana (Orishele and Corne 1) with the hemibiotrophic fungal Mycosphaerella fijiensis and his toxin (juglone) were investigated. The results showed that SA and ASM at low concentrations (25 and 50 µg/ml) did not affect M. fijiensis development but have the capacity to induce protection into sensitive banana against juglone toxic effect. These SAR inducers reduced the intensity of the necrosis due to the juglone and lengthened the incubation period of M. fijiensis after inoculation of banana leaves. The expression of the resistance induced was related to the variety of banana. More significant effectiveness of protection was obtained with ASM in particular on Corne 1. A total protection against the induction of necrosis was kept up to 100 µg/ml of juglone 2 to 3 weeks after application of ASM on the soil and on the leaves of banana. ASM constitutes a viable and noncontaminant option in the fight against to BLSD because of his non-inhibiting action on M. fijiensis and excellent protection into banana when roots and leaves were treated.


Sign in / Sign up

Export Citation Format

Share Document