Class 1 and class 2 integrons in multidrug-resistant gram-negative bacteria isolated from the Salmon River, British Columbia

2011 ◽  
Vol 57 (6) ◽  
pp. 460-467 ◽  
Author(s):  
Hai Xu ◽  
Klaas Broersma ◽  
Vivian Miao ◽  
Julian Davies

Using an enrichment protocol, we isolated 16 gram-negative, multidrug-resistant strains of known or opportunistic bacterial pathogens from the Salmon River in south-central British Columbia from 2005 to 2009, and investigated the genetic basis of their resistance to a variety of antibiotics. Of the 16 strains, 13 carried class 1 integrons and three carried class 2 integrons. Genes found in cassettes associated with the integrons included those for dihydrofolate reductases (dfrA1, dfrA12, dfrA17, and dfrB7), aminoglycoside adenyltransferases (aadA1, aadA2, aadA5, and aadB), streptothricin acetyltransferase (sat), and hypothetical proteins (orfF and orfC). A new gene cassette of unknown function, orf1, was discovered between dfrA1 and aadA5 in Escherichia sp. Other genes for resistance to tetracycline, chloramphenicol, streptomycin, and kanamycin (tetA, tetB, tetD; catA; strA-strB; and aphA1-Iab, respectively) were outside the integrons. Several of these resistance determinants were transferable by conjugation. The detection of organisms and resistance determinants normally associated with clinical settings attest to their widespread dispersal and suggest that regular monitoring of their presence in aquatic habitats should become a part of the overall effort to understand the epidemiology of antibiotic resistance genes in bacteria.

2010 ◽  
Vol 76 (11) ◽  
pp. 3657-3667 ◽  
Author(s):  
Janine Beutlich ◽  
Irene Rodr�guez ◽  
Andreas Schroeter ◽  
Annemarie K�sbohrer ◽  
Reiner Helmuth ◽  
...  

ABSTRACT Recently, Salmonella enterica subsp. enterica serovar Saintpaul has increasingly been observed in several countries, including Germany. However, the pathogenic potential and epidemiology of this serovar are not very well known. This study describes biological attributes of S. Saintpaul isolates obtained from turkeys in Germany based on characterization of their pheno- and genotypic properties. Fifty-five S. Saintpaul isolates from German turkeys and turkey-derived food products isolated from 2000 to 2007 were analyzed by using antimicrobial agent, organic solvent, and disinfectant susceptibility tests, isoelectric focusing, detection of resistance determinants, plasmid profiling, pulsed-field gel electrophoresis (PFGE), and hybridization experiments. These isolates were compared to an outgroup consisting of 24 S. Saintpaul isolates obtained from humans and chickens in Germany and from poultry and poultry products (including turkeys) in Netherlands. A common core resistance pattern was detected for 27 German turkey and turkey product isolates. This pattern included resistance (full or intermediate) to ampicillin, amoxicillin-clavulanic acid, gentamicin, kanamycin, nalidixic acid, streptomycin, spectinomycin, and sulfamethoxazole and intermediate resistance or decreased susceptibility to ciprofloxacin (MIC, 2 or 1 μg/ml, respectively) and several third-generation cephalosporins (including ceftiofur and cefoxitin [MIC, 4 to 2 and 16 to 2 μg/ml, respectively]). These isolates had the same core resistance genotype, with bla TEM-1, aadB, aadA2, sul1, a Ser83→Glu83 mutation in the gyrA gene, and a chromosomal class 1 integron carrying the aadB-aadA2 gene cassette. Their XbaI, BlnI, and combined XbaI-BlnI PFGE patterns revealed levels of genetic similarity of 93, 75, and 90%, respectively. This study revealed that a multiresistant S. Saintpaul clonal line is widespread in turkeys and turkey products in Germany and was also detected among German human fecal and Dutch poultry isolates.


2016 ◽  
Vol 60 (7) ◽  
pp. 4346-4350 ◽  
Author(s):  
Laura J. Rojas ◽  
Meredith S. Wright ◽  
Elsa De La Cadena ◽  
Gabriel Motoa ◽  
Kristine M. Hujer ◽  
...  

ABSTRACTWe report complete genome sequences of fourblaNDM-1-harboring Gram-negative multidrug-resistant (MDR) isolates from Colombia. TheblaNDM-1genes were located on 193-kb Inc FIA, 178-kb Inc A/C2, and 47-kb (unknown Inc type) plasmids. Multilocus sequence typing (MLST) revealed that these isolates belong to sequence type 10 (ST10) (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumanniiandAcinetobacter nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid inE. colicontained a novel complex transposon (Tn125and Tn5393with three copies ofblaNDM-1) and a recombination “hot spot” for the acquisition of new resistance determinants.


2001 ◽  
Vol 67 (12) ◽  
pp. 5675-5682 ◽  
Author(s):  
Anja S. Schmidt ◽  
Morten S. Bruun ◽  
Inger Dalsgaard ◽  
Jens L. Larsen

ABSTRACT A collection of 313 motile aeromonads isolated at Danish rainbow trout farms was analyzed to identify some of the genes involved in high levels of antimicrobial resistance found in a previous field trial (A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, Appl. Environ. Microbiol. 66:4908–4915, 2000), the predominant resistance phenotype (37%) being a combined oxytetracycline (OTC) and sulphadiazine/trimethoprim resistance. Combined sulphonamide/trimethoprim resistance (135 isolates) appeared closely related to the presence of a class 1 integron (141 strains). Among the isolates containing integrons, four different combinations of integrated resistance gene cassettes occurred, in all cases including a dihydrofolate reductase gene and a downstream aminoglycoside resistance insert (87 isolates) and occasionally an additional chloramphenicol resistance gene cassette (31 isolates). In addition, 23 isolates had “empty” integrons without inserted gene cassettes. As far as OTC resistance was concerned, only 66 (30%) out of 216 resistant aeromonads could be assigned to resistance determinant class A (19 isolates), D (n = 6), or E (n = 39); three isolates contained two tetracycline resistance determinants (AD, AE, and DE). Forty OTC-resistant isolates containing large plasmids were selected as donors in a conjugation assay, 27 of which also contained a class 1 integron. Out of 17 successful R-plasmid transfers to Escherichia coli recipients, the respective integrons were cotransferred along with the tetracycline resistance determinants in 15 matings. Transconjugants were predominantly tetApositive (10 of 17) and contained class 1 integrons with two or more inserted antibiotic resistance genes. While there appeared to be a positive correlation between conjugative R-plasmids andtetA among the OTC-resistant aeromonads, tetEand the unclassified OTC resistance genes as well as class 1 integrons were equally distributed among isolates with and without plasmids. These findings indicate the implication of other mechanisms of gene transfer besides plasmid transfer in the dissemination of antibiotic resistance among environmental motile aeromonads.


2004 ◽  
Vol 133 (1) ◽  
pp. 81-86 ◽  
Author(s):  
C. S. TORO ◽  
M. FARFÁN ◽  
I. CONTRERAS ◽  
O. FLORES ◽  
N. NAVARRO ◽  
...  

A total of 162 clinical isolates of Shigella collected from children in a semi-rural community of Chile were examined for the presence of genetic determinants of resistance to ampicillin, chloramphenicol, tetracycline, and trimethoprim. Ampicillin resistance was most frequently associated with the presence of blaOXA in S. flexneri and with blaTEM in S. sonnei. The blaOXA gene but not blaTEM was located in class 1 integrons. The dhfrIa gene encoding for resistance to trimethoprim was associated to class 2 integrons and detected exclusively in S. flexneri, whereas dhfrIIIc was found in all S. sonnei strains and in 10% of the S. flexneri isolates. Cat, coding for choramphenicol resistance, and blaOXA genes were located in the chromosome in all cases, whereas tetA gene, coding for tetracycline resistance, and blaTEM, dhfrIa and dhfrIIIc genes were found either in the chromosome or in conjugative plasmids. Our results show a heterogenous distribution of antibiotic-resistance determinants between S. flexneri and S. sonnei.


2004 ◽  
Vol 48 (2) ◽  
pp. 666-669 ◽  
Author(s):  
Raquel Barbolla ◽  
Mariana Catalano ◽  
Betina E. Orman ◽  
Angela Famiglietti ◽  
Carlos Vay ◽  
...  

ABSTRACT Twenty-five plasmid-specified antimicrobial resistance determinants common to gram-negative bacilli from nosocomial infection were investigated from 31 Stenotrophomonas maltophilia isolates. Twenty-four clones were identified by pulsed-field gel electrophoresis, and in three clones that exhibited an increased trimethoprim-sulfamethoxazole MIC, the sul1 determinant was found. These results support not only the higher spread of class 1 integrons compared to other mechanisms but also the potential limitation of using trimethoprim-sulfamethoxazole for therapy of severe S. maltophilia infections.


2014 ◽  
Vol 58 (7) ◽  
pp. 4207-4210 ◽  
Author(s):  
Fabrice Compain ◽  
Lionel Frangeul ◽  
Laurence Drieux ◽  
Charlotte Verdet ◽  
Sylvain Brisse ◽  
...  

ABSTRACTWe report here the complete nucleotide sequence of two IncR replicons encoding multidrug resistance determinants, including β-lactam (blaDHA-1,blaSHV-12), aminoglycoside (aphA1,strA,strB), and fluoroquinolone (qnrB4,aac6′-1b-cr) resistance genes. The plasmids have backbones that are similar to each other, including the replication and stability systems, and contain a wide variety of transposable elements carrying known antibiotic resistance genes. This study confirms the increasing clinical importance of IncR replicons as resistance gene carriers.


2010 ◽  
Vol 54 (8) ◽  
pp. 3471-3474 ◽  
Author(s):  
Ruirui Xia ◽  
Xianhu Guo ◽  
Yuzhen Zhang ◽  
Hai Xu

ABSTRACT A qnrVC-like gene, qnrVC4, was found in a novel complex class 1 integron gene cassette array following the ISCR1 element and bla PER-1 in a multidrug-resistant strain of the aquatic bacterium Aeromonas punctata. The deduced QnrVC4 protein sequence shares 45% to 81% amino acid identity with quinolone resistance determinants QnrB6, QnrA1, QnrS1, QnrC, QnrVC1, and QnrVC3. A Ser-83 to Ile amino acid substitution in gyrase A may be mainly responsible for ciprofloxacin resistance in this strain.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yan Zhao ◽  
Wenkai Niu ◽  
Yanxia Sun ◽  
Huaijie Hao ◽  
Dong Yu ◽  
...  

AnS. maltophiliastrain named WJ66 was isolated from a patient; WJ66 showed resistance to more antibiotics than the otherS. maltophiliastrains. This bacteraemia is resistant to sulphonamides, or fluoroquinolones, while the representative strain ofS. maltophilia, K279a, is sensitive to both. To explore drug resistance determinants of this strain, the draft genome sequence of WJ66 was determined and compared to otherS. maltophiliasequences. Genome sequencing and genome-wide evolutionary analysis revealed that WJ66 was highly homologous with the strain K279a, but strain WJ66 contained additional antibiotic resistance genes. Further analysis confirmed that strain WJ66 contained an amino acid substitution (Q83L) in fluoroquinolone target GyrA and carried a class 1 integron, with anaadA2gene in the resistance gene cassette. Homology analysis from the pathogen-host interaction database showed that strain WJ66 lacks raxST and raxA, which is consistent with K279a. Comparative genomic analyses revealed that subtle nucleotide differences contribute to various significant phenotypes in close genetic relationship strains.


2019 ◽  
Author(s):  
Marinelle Rodrigues ◽  
Sara W. McBride ◽  
Karthik Hullahalli ◽  
Kelli L. Palmer ◽  
Breck A. Duerkop

AbstractThe innovation of new therapies to combat multidrug-resistant (MDR) bacteria is being outpaced by the continued rise of MDR bacterial infections. Of particular concern are hospital-acquired infections (HAIs) recalcitrant to antibiotic therapies. The Gram-positive intestinal pathobiontEnterococcus faecalisis associated with HAIs and some strains are MDR. Therefore, novel strategies to controlE. faecalispopulations are needed. We previously characterized anE. faecalisType II CRISPR-Cas system and demonstrated its utility in the sequence-specific removal of antibiotic resistance determinants. Here we present work describing the adaption of this CRISPR-Cas system into a constitutively expressed module encoded on a pheromone-responsive conjugative plasmid that efficiently transfers toE. faecalisfor the selective removal of antibiotic resistance genes. Usingin vitrocompetition assays, we show that these CRISPR-Cas-encoding delivery plasmids, or CRISPR-Cas antimicrobials, can reduce the occurrence of antibiotic resistance in enterococcal populations in a sequence-specific manner. Furthermore, we demonstrate that deployment of CRISPR-Cas antimicrobials in the murine intestine reduces the occurrence of antibiotic-resistantE. faecalisby several orders of magnitude. Finally, we show thatE. faecalisdonor strains harboring CRISPR-Cas antimicrobials are immune to uptake of antibiotic resistance determinantsin vivo. Our results demonstrate that conjugative delivery of CRISPR-Cas antimicrobials may be adaptable for future deployment from probiotic bacteria for exact targeting of defined MDR bacteria or for precision engineering of polymicrobial communities in the mammalian intestine.ImportanceCRISPR-Cas nucleic acid targeting systems hold promise for the amelioration of multidrug-resistant enterococci, yet the utility of such tools in the context of the intestinal environment where enterococci reside is understudied. We describe the development of a CRISPR-Cas antimicrobial, deployed on a conjugative plasmid, for the targeted removal of antibiotic resistance genes from intestinalEnterococcus faecalis. We demonstrate that CRISPR-Cas targeting reduces antibiotic resistance ofE. faecalisby several orders of magnitude in the intestine. Although barriers exist that influence the penetrance of the conjugative CRISPR-Cas antimicrobial among target recipientE. faecaliscells, the removal of antibiotic resistance genes inE. faecalisupon uptake of the CRISPR-Cas antimicrobial is absolute. In addition, cells that obtain the CRISPR-Cas antimicrobial are immunized against the acquisition of new antibiotic resistance genes. This study suggests a potential path toward plasmid based CRISPR-Cas therapies in the intestine.


Author(s):  
Mohammed Abdel-Maksoud ◽  
Rania Abdel-Khalek ◽  
Atef El-Gendy ◽  
Rawia F. Gamal ◽  
Hemmat M. Abdelhady ◽  
...  

Background: Food-borne diseases pose serious health problems, affecting public health and economic development worldwide.Methods: Salmonella was isolated from samples of chicken parts, skin samples of whole chicken carcasses, raw egg yolks, eggshells and chicken faeces. Resulting isolates were characterised by serogrouping, serotyping, antimicrobial susceptibility testing and detection of extended-spectrum β-lactamase (ESBL) production. Antibiotic resistance genes and integrons were identified by polymerase chain reaction (PCR).Results: The detection rates of Salmonella were 60%, 64% and 62% in chicken parts, skin, and faeces, respectively, whereas the egg yolks and eggshells were uniformly negative. Salmonella Kentucky and S. Enteritidis serotypes comprised 43.6% and 2.6% of the isolates, respectively, whilst S. Typhimurium was absent. Variable resistance rates were observed against 16 antibiotics; 97% were resistant to sulfamethoxazole, 96% to nalidixic acid and tetracycline and 76% to ampicillin. Multidrug resistance was detected in 82% (64/78) of the isolates and ESBL production was detected in 8% (6/78). The β-lactamase blaTEM-1 gene was detected in 57.6% and blaSHV-1 in 6.8% of the isolates, whilst the blaOXA gene was absent. The sul1gene was detected in 97.3% and the sul2 gene in 5.3% of the isolates. Sixty-four of the 78 isolates (82%) were positive for the integrase gene (int I) from class 1 integrons, whilst int II was absent.Conclusion: This study reveals the presence of an alarming number of multidrug-resistant Salmonella isolates in the local poultry markets in Cairo. The high levels of drug resistance suggest an emerging problem that could impact negatively on efforts to prevent and treat poultry and poultry-transmitted human diseases in Egypt.


Sign in / Sign up

Export Citation Format

Share Document