Seasonal differences in freezing tolerance of yellow-cedar and western hemlock trees at a site affected by yellow-cedar decline

2005 ◽  
Vol 35 (8) ◽  
pp. 2065-2070 ◽  
Author(s):  
Paul G Schaberg ◽  
Paul E Hennon ◽  
David V D'Amore ◽  
Gary J Hawley ◽  
Catherine H Borer

To assess whether inadequate cold hardiness could be a contributor to yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) decline, we measured the freezing tolerance of foliage from yellow-cedar trees in closed-canopy (nondeclining) and open-canopy (declining at elevations below 130 m) stands at three sites along an elevational gradient in the heart of the decline in southeastern Alaska. Foliar freezing tolerance was also assessed for sympatric nondeclining western hemlock (Tsuga heterophylla (Raf.) Sarg.). Measurements were made in the fall, winter, and spring to evaluate if seasonal differences in cold hardiness help explain species-specific injury. Significant differences in freezing tolerance attributable to site, canopy closure, species, and the interaction of canopy closure and species were each detected for at least one sample period. However, only two results were consistent with field reports of yellow-cedar decline: (1) between winter and spring measurements, yellow-cedar trees dehardened almost 13 °C more than western hemlock trees, so that yellow-cedar trees were more vulnerable to foliar freezing injury in spring than western hemlock; and (2) stands below 130 m appeared more vulnerable to freezing injury than stands above 130 m.

2008 ◽  
Vol 133 (4) ◽  
pp. 542-550 ◽  
Author(s):  
Xunzhong Zhang ◽  
Kehua Wang ◽  
Erik H. Ervin

Recent advances in bermudagrass [Cynodon dactylon (L.) Pers. var. dactylon] breeding and cultural management practices have enabled its use as a sports surface in U.S. Department of Agriculture cold hardiness zones 5 and 6. Use of these more cold-hardy bermudagrass cultivars further into transition- and cool-season zones increases the probability of freezing injury and increases the need for an improved understanding of physiological responses to chilling and freezing temperatures. Abscisic acid (ABA) has been shown to increase during cold acclimation (CA) and play a role in dehydration tolerance. This study investigated changes in ABA metabolism and dehydrin expression during CA and their association with freezing tolerance in four bermudagrass cultivars. Two cold-tolerant (‘Patriot’ and ‘Riviera’) and two relatively cold-sensitive (‘Tifway’ and ‘Princess’) cultivars were either subjected to CA at 8 °C day/4 °C night with a light intensity of 250 μmol·m−2·s−1 over a 10-h photoperiod for 21 days or maintained at 28 °C day/24 °C night over a 12-h photoperiod. In a separate study, exogenous ABA at 0, 50, 100, and 150 μm was applied to ‘Patriot’ bermudagrass without CA. ABA content in leaf and stolon tissues increased substantially during the first week of CA and remained relatively stable thereafter. ‘Patriot’ and ‘Riviera’ had greater ABA content and less stolon electrolyte leakage (EL) relative to ‘Tifway’ and ‘Princess’. Expression of a 25 kDa dehydrin protein increased during CA in all four cultivars. A significant correlation was found between ABA content and freezing tolerance. Exogenously applying ABA to ‘Patriot’ at 50, 100, and 150 μm significantly increased endogenous ABA content and the 25 kDa dehydrin expression and reduced stolon EL. The results suggest that alteration of ABA metabolism during CA is closely associated with freezing tolerance. Selection and use of cultivars with substantial accumulation of ABA and certain dehydrins during CA or in response to exogenous ABA could improve bermudagrass persistence in transition zone climates.


2000 ◽  
Vol 30 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Thaddeus McCamant ◽  
R Alan Black

Freezing tolerance was studied in laboratory and field tests using black cottonwood, Populus trichocarpa Torr. & Gray, clones collected from eight populations within the coastal, montane, and inland regions of the Pacific Northwest. Freezing tolerance varied among different populations and was dependent on growing environment. Clones from coastal populations grown in a coastal common garden (Puyallup, Wash.) had 50% less injury in laboratory tests compared with the same clones grown in an inland common garden (Pullman, Wash.). In contrast, clones from inland populations grown in an inland common garden had 50% less injury in laboratory tests compared with the same clones grown in a coastal common garden. Freezing tolerance also varied between coastal populations. In field tests at the inland common garden, clones from inland and montane populations had less freezing injury compared with clones from coastal populations. Leaves on 50% of the clones with coastal origins were killed by the first fall frosts compared with 25% for clones with inland origins. Subsequently, 50% of the coastal clones exhibited winter injury following the winters of 1993-1994 and 1994-1995 at the inland common garden. Clones from inland populations exhibited little or no winter injury. The specific tissues injured during freezing tests varied among clones. Populus trichocarpa is a species offering considerable variation for selection to local environments, and therefore, the source of material should be an important consideration in hybrid poplar breeding programs.


HortScience ◽  
2012 ◽  
Vol 47 (12) ◽  
pp. 1821-1825 ◽  
Author(s):  
Ali Akbar Ghasemi Soloklui ◽  
Ahmad Ershadi ◽  
Esmaeil Fallahi

Freezing injury is one of the most important limiting factors in commercial pomegranate production. The objectives of this study were to compare cold hardiness of seven Iranian pomegranate cultivars at three stages: November, January, and March, and to investigate the relationship between freezing tolerance and soluble carbohydrate and proline changes of shoots during acclimation and deacclimation. LT50 values, estimated by both electrolyte leakage measurement (EL LT50) and tetrazolium stain test (TST LT50), allowed us to discriminate between the cultivars in terms of freezing tolerance. Acclimation and deacclimation did not occur simultaneously in different cultivars, having a key role in cold tolerance of cultivars, especially in fall and late winter. Post Sefid Bafgh cultivar showed high cold tolerance early in fall, but it was susceptible to cold during winter. ‘Naderi’, ‘Yusef Khani’, ‘Malas Saveh’, and ‘Robab Neyriz’ had the highest midwinter cold hardiness; ‘Mahabadi’ showed an intermediate hardiness, whereas ‘Post Sefid Bafgh’ and ‘Shishe Kap’ were found to be cold-susceptible in this period. Freezing tolerance estimated by TST corresponded to those measured by the EL method in all cultivars, but in November and January, higher variation in freezing tolerance was observed among the cultivars through TST compared with EL measurement. However, LT50 values, estimated by EL measurement, were lower than those estimated through TST in November and March. Soluble carbohydrate concentrations of stem samples increased during cold acclimation from November to January; then it decreased in March. Proline had a narrow range of variation among the cultivars in November, but an increase in the amount of proline was observed during the period of hardening. In general, stronger correlations were observed between LT50 values and the amounts of soluble carbohydrates compared with proline, particularly from fall to midwinter.


1997 ◽  
Vol 75 (9) ◽  
pp. 1424-1435 ◽  
Author(s):  
D. Mailly ◽  
J. P. Kimmins

Silvicultural alternatives that differ in the degree of overstory removal may create shady environments that will be problematic for the regeneration of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Gradients of light in the field were used to compare mortality, growth, and leaf morphological acclimation of two conifer species of contrasting shade tolerances: Douglas-fir and western hemlock (Tsuga heterophylla (Raf.) Sarg.). Results after two growing seasons indicated that Douglas-fir mortality occurred mainly at relative light intensity (RLI) below 20%, while western hemlock mortality was evenly distributed along the light gradient. Height, diameter, and biomass of the planted seedlings increased with increasing light for both species but at different rates, and maximum biomass accumulation always occurred in the open. Douglas-fir allocated more resources to stem biomass than western hemlock, which accumulated more foliage biomass. Increases in specific leaf area for Douglas-fir seedlings occurred at RLI ≤ 0.4 and red/far red (R/FR) ratio ≤ 0.6, which appear to be the minimal optimum light levels for growth. Conversely, western hemlock seedlings adjusted their leaf morphology in a more regular pattern, and changes were less pronounced at low light levels. These results, along with early mortality results for Douglas-fir, suggest that the most successful way to artificially regenerate this species may be by allowing at least 20% of RLI for ensuring survival and at least 40% RLI for optimum growth. Key words: light, light quality, leaf morphology, acclimation.


1987 ◽  
Vol 119 (12) ◽  
pp. 1109-1115
Author(s):  
W.P.L. Osborn ◽  
J.H. Borden

AbstractTo mitigate the effects of mosquitoes, settlers in the Revelstoke area of British Columbia reportedly burned the sporophores of the Indian paint fungus, Echinodontium tinctorium (Ell. & Ev.) Ell. & Ev., a pathogen of western hemlock, Tsuga heterophylla (Raf.) Sarg., and true firs, Abies spp. Larval and adult yellowfever mosquitoes, Aedes aegypti (L.), were exposed to aqueous extracts of smoke (smoke-waters) from E. tinctorium sporophores, and from western hemlock sapwood and heartwood. Smoke-waters were of approximately equal toxicity to larvae. Fungus smoke-water, but not sapwood or heartwood smoke-waters, lost 50% of its potency in 5 months. Vapors from fungus smoke-water were significantly more toxic to adult mosquitoes than those from sapwood or heartwood. Thus smoke from E. tinctorium sporophores and T. heterophylla wood apparently contain different water-soluble combustion products toxic to A. aegypti.


2005 ◽  
Vol 35 (6) ◽  
pp. 1496-1501
Author(s):  
G R Johnson ◽  
C Cartwright

Western hemlock (Tsuga heterophylla (Raf.) Sarg.) families were grown under different levels of shade for 2 or 3 years at two nursery sites to determine whether families performed differently relative to one another in the different shade environments. Differences were found both for levels of shade and families, but no family × shade interaction was found. Results suggest that families selected in full-sun environments (clearcuts or farm fields) may be well suited for use in silvicultural systems where seedlings are planted in understory conditions.


2019 ◽  
Vol 433 ◽  
pp. 105-110
Author(s):  
Matthew E. Hane ◽  
Andrew J. Kroll ◽  
Aaron Springford ◽  
Jack Giovanini ◽  
Mike Rochelle ◽  
...  

1990 ◽  
Vol 122 (3) ◽  
pp. 555-562 ◽  
Author(s):  
R.F. Shepherd ◽  
T.G. Gray

AbstractEggs of western blackheaded budworm, Acleris gloverana (Walsingham), are laid on the lower surface of western hemlock, Tsuga heterophylla (Raf.) Sarg., needles. A comparison was made of the following measures of sample branch size as a basis for expressing egg density: fresh branch weight, branch area, total twig length, branch volume, and number of buds. The criteria for selection of these measures were as follows: correlations of branch size with dry needle weight, variances of egg density and their relative contribution to sample size, and ease of measurement. Fresh branch weight was the best choice. A sequential sampling system was developed on this basis and was related to a scale of predicted defoliation. In addition, a transformation was provided for use in data analysis.


1949 ◽  
Vol 27c (6) ◽  
pp. 312-331 ◽  
Author(s):  
D. C. Buckland ◽  
R. E. Foster ◽  
V. J. Nordin

An investigation of decay in western hemlock (Tsuga heterophylla (Raf.) Sarg.) and fir (mainly Abies amabilis (Loud.) Forb.) in the Juan de Fuca forest region of British Columbia has shown that the major organisms causing root and butt rots are the same in both species. These are Poria subacida (Peck) Sacc., Fomes annosus (Fr.) Cke., Armillaria mellea Vahl ex Fr., Polyporus sulphureus Bull. ex Fr., and P. circinatus Fr. Those organisms causing trunk rots of western hemlock, in decreasing order of importance, are Fomes pinicola (Sw.) Cke., F. Pini (Thore) Lloyd, Stereum abietinum Pers., Fomes Hartigii (Allesch.) Sacc. and Trav., and Hydnum sp. (H. abietis). These same organisms causing trunk rots of fir, in decreasing order of importance, are Fomes pinicola, Stereum abietinum, Hydnum sp. (H. abietis), Fomes Pini, and Fomes Hartigii. The logs of 963 western hemlock were analyzed in detail. Maximum periodic volume increment was reached between 225 and 275 years of age. Maximum periodic volume increment was reached between 275 and 325 years of age in the 719 fir that were analyzed. Scars were the most frequent avenue of entrance for infection. In 59% of the cases of infection studied the fungus had entered through wounds.


Sign in / Sign up

Export Citation Format

Share Document