Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests

2009 ◽  
Vol 39 (2) ◽  
pp. 467-480 ◽  
Author(s):  
Virginia H. Dale ◽  
Karen O. Lannom ◽  
M. Lynn Tharp ◽  
Donald G. Hodges ◽  
Jonah Fogel

Model projections suggest that both climate and land-use changes have large effects on forest biomass and composition in the Cumberland forests of Tennessee and Kentucky. These forests have high levels of diversity, ecological importance, land-use changes, and pressures due to invasive herbivorous insects and climate change. Three general circulation models project warming for all months in 2030 and 2080 and complex patterns of precipitation change. Climate changes from 1980 to 2100 were developed from these projections and used in the forest ecosystem model LINKAGES to estimate transient changes in forest biomass and species composition over time. These projections show that climate changes can instigate a decline in forest stand biomass and then recovery as forest species composition shifts. In addition, a landscape model (LSCAP) estimates changes in land-cover types of the Cumberlands based on projected land-use changes and the demise of eastern hemlock ( Tsuga canadensis (L.) Carrière) due to the spread of the hemlock adelgid ( Adelges tsugae Annand). LSCAP suggests that land-cover changes can be quite large and can cause a decline not only in the area of forested lands but also in the size and number of large contiguous forest patches that are necessary habitat for many forest species characteristic of the Cumberlands.

Author(s):  
E. Ramadan ◽  
T. Al-Awadhi ◽  
Y. Charabi

The study of land cover/land use dynamics under climate change conditions is of great significance for improving sustainable ecological management. Understanding the relationships between land cover and land use changes and climate change is thus very important. Understanding the interactive and cumulative effects of climate and land-use changes are a priority for urban planners and policy makers. The present investigation is based on Landsat satellite imagery to explore changes in vegetation spatial distribution between the years from 2000 to2018 The methodology is focused on vegetation indexes tracking and algebraic overlay calculation to analyzed vegetation and their spatial differentiation, land cover change pattern, and the relationships between vegetation dynamics and land cover change in Dhofar Governorate. The study results have revealed that the vegetation vigor is lower in all years compared to 2000. The scene of 2010 shows the minimum vegetation vigor, overall. Besides, the investigation shows a statistical relationship between rainfall and the status of the health of vegetation. Monsoon rainfall has an impact of the growth of vegetation. Between 2012 and 2013, the vegetation activity shows a decreasing trend. The analysis diagnoses an area affected by the worst degree of aridity situated in the southeastern of Dhofar Mountains. Climate change is the main driving factor resulted from both human activities and rainfall fluctuation.


2021 ◽  
Author(s):  
Sneha Santy ◽  
Pradeep Mujumdar ◽  
Govindasamy Bala

<p>High industrial discharge, excessive agricultural activities, untreated sewage disposal make the Kanpur region one of the most contaminated stretches of the Ganga river. This study analyses water quality for the combined future climate change and land use land cover scenarios for mid-century for a 238km long Kanpur stretch of Ganga river. Climate change projections from 21 General Circulation Models for the scenarios of RCP 4.5 and RCP 8.5 are considered and Land use Land Cover (LULC) projections are made with QGIS software. Streamflow and water temperature are modelled using the HEC-HMS model and a Water-Air temperature regression model, respectively. Water quality analysis is simulated using the QUAL2K model in terms of nine water quality parameters, dissolved oxygen, biochemical oxygen demand (BOD), ammonia nitrogen, nitrate nitrogen, total nitrogen, organic phosphorus, inorganic phosphorus, total phosphorus and faecal coliform. Climate change impact alone is projected to result in degraded water quality in the future. Combined climate change and LULC change may further degrade water quality, especially at the study area's critical locations. Our study will provide guidance to policymakers to safeguard the Ganga river from further pollution.</p>


2019 ◽  
Vol 11 (5) ◽  
pp. 1443 ◽  
Author(s):  
Rui Yan ◽  
Yanpeng Cai ◽  
Chunhui Li ◽  
Xuan Wang ◽  
Qiang Liu

This study researched the individual and combined impacts of future LULC and climate changes on water balance in the upper reaches of the Beiluo River basin on the Loess Plateau of China, using the scenarios of RCP4.5 and 8.5 of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The climate data indicated that both precipitation and temperature increased at seasonal and annual scales from 2020 to 2050 under RCP4.5 and 8.5 scenarios. The future land use changes were predicted through the CA-Markov model. The land use predictions of 2025, 2035, and 2045 indicated rising forest areas with decreased agricultural land and grassland. In this study, three scenarios including only LULC change, only climate change, and combined climate and LULC change were established. The SWAT model was calibrated, validated, and used to simulate the water balance under the three scenarios. The results showed that increased rainfall and temperature may lead to increased runoff, water yield, and ET in spring, summer, and autumn and to decreased runoff, water yield, and ET in winter from 2020 to 2050. However, LULC change, compared with climate change, may have a smaller impact on the water balance. On an annual scale, runoff and water yield may gradually decrease, but ET may increase. The combined effects of both LULC and climate changes on water balance in the future were similar to the variation trend of climate changes alone at both annual and seasonal scales. The results obtained in this study provide further insight into the availability of future streamflow and can aid in water resource management planning in the study area.


Author(s):  
Son Ngo ◽  
Huong Hoang ◽  
Phuong Tran ◽  
Loc Nguyen

Land use/land cover (LULC) and climate changes are two main factors directly affecting hydrologic conditions. However, very few studies in Vietnam have investigated changes in hydrological process under the impact of climate and land use changes on a basin scale. The objective of this study is to assess the individual and combined impacts of land use and climate changes on hydrological processes for the Nam Rom river basin, Northwestern Viet Nam using Remote Sensing (RS) and Soil and Water Assessment Tools (SWAT) model. SWAT model was used for hydrological process simulation. Results indicated that SWAT proved to be a powerful tool in simulating the impacts of land use and climate change on catchment hydrology. The change in historical land use between 1992 and 2015 strongly contributed to increasing hydrological processes (ET, percolation, ground water, and water yield), whereas, climate change led to significant decrease of all hydrological components. The combination of land use and climate changes significantly reduced surface runoff (-16.9%), ground water (-5.7%), water yield (-9.2%), and sediment load (-4.9%). Overall climatic changes had more significant effect on hydrological components than land use changes in the Nam Rom river basin during the 1992–2015. Under impacts of projected land use and climate change scenarios in 2030 on hydrological process of the upper Nam Rom river basin indicate that ET and surface flow are more sensitive to the changes in land use and climate in the future. In conclusion, the findings of this study will basic knowledge of the effects of climate and land-use changes on the hydrology for future development of integrated land use and water management practices in Nam Rom river basin.


2008 ◽  
Vol 4 (5) ◽  
pp. 564-567 ◽  
Author(s):  
Sven Pompe ◽  
Jan Hanspach ◽  
Franz Badeck ◽  
Stefan Klotz ◽  
Wilfried Thuiller ◽  
...  

We present niche-based modelling to project the distribution of 845 European plant species for Germany using three different models and three scenarios of climate and land use changes up to 2080. Projected changes suggested large effects over the coming decades, with consequences for the German flora. Even under a moderate scenario (approx. +2.2°C), 15–19% (across models) of the species we studied could be lost locally—averaged from 2995 grid cells in Germany. Models projected strong spatially varying impacts on the species composition. In particular, the eastern and southwestern parts of Germany were affected by species loss. Scenarios were characterized by an increased number of species occupying small ranges, as evidenced by changes in range-size rarity scores. It is anticipated that species with small ranges will be especially vulnerable to future climate change and other ecological stresses.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 305
Author(s):  
Oscar Melo ◽  
William Foster

The appropriate design of land-use and rural employment policies depends upon the anticipated performance of the farm sector in the context of expected climate changes, especially with respect to land allocations to potential activities. Concerns over the possible net benefits of land-use changes are particularly acute in lower- and middle-income countries, where agriculture tends to be important in employment, income generation and foreign-exchange earnings. This paper presents an analysis of the expected impacts on land use in Chile of projected climate-change scenarios in 2040 and 2070. We developed a farmland allocation model with associated labor employment at the municipal level driven by expected relative net incomes per hectare, constructed from local average per-hectare yields, regional average output prices and per-hectare production cost estimates. The sensitivities of cropland allocations to relative net-income changes were estimated using historical land allocations at the municipal level derived from the last two Chilean Agricultural Censuses. The results show that the impacts of climate changes will be mitigated by land-use adaptation, the main export-earning crops tending to move south; in aggregate, agricultural employment will decrease in all the climate-change scenarios; forestry and agriculture would likely suffer a loss in net-income generation under severe climate-change scenarios.


2017 ◽  
Author(s):  
Michael S. Aduah ◽  
Graham P. W. Jewitt ◽  
Michele L. W. Toucher

Abstract. This study analysed the separate and the combined impacts of climate and land use changes on hydrology on the Bonsa catchment in Ghana, West Africa, using the ACRU hydrological model. The study used five RCP8.5 climate change scenarios (wet, 25th percentile, 75th percentile, dry and a multi-model median of nine GCMs) from the CMIP5 AR5 models for near (2020–2039) and far (2060–2079) future time slices. Change factors were used to downscale the GCM scenarios to the local scale, using observed climate data for the control period of 1990 to 2009. The land use of 1991 and 2011 were used as the baseline and current land use as well as three future land use scenarios (BAU, EG, EGR) for two time slices (2030 and 2070) were used. The study showed that under all separate climate change scenarios, overall flows reduced, but under combined climate and land use changes, streamflows increased. Under the combined scenarios, streamflow responses due to the different future land use scenarios were not substantially different. Also, land use is the dominant controlling factor in streamflow changes in the Bonsa catchment under a dry climate change, but under a wet climate change, climate controls streamflow changes. The spatial variability of catchment streamflow changes under combined land use and climate changes were greater than the spatial variability of streamflow changes under climate change. The range of plausible future streamflows changes derived in this study provides natural resources and environmental managers of the Bonsa catchment, the first ever and the most current information to develop suitable adaptation and mitigation strategies, to prepare adequately for climate and land use changes.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
R. B. Singh ◽  
Chenchen Shi

Global land use and land cover pattern has greatly changed in the past 50 years, which exerts direct or indirect influence on the climate change remarkably at both regional and global scales. Therefore, observing and estimating the land use impacts on surface climate is essential and has been continuously promoted by researchers. This paper explores the advancement in the models, data, and application for observing and estimating the land use impacts on surface climate and points out further research needs and priorities, which hopefully will provide some references for related studies.


Author(s):  
Arnan Araza ◽  
Maricon Perez ◽  
Rex Victor Cruz ◽  
Larlyn Faith Aggabao ◽  
Eugene Soyosa

AbstractOne of the main impact areas of climate change (CC), and land use and land cover change (LULCC) is the hydrology of watersheds, which have negative implications to the water resources. Their impact can be indicated by changes on streamflow, which is quantifiable using process-based streamflow modelling of baseline and future scenarios. Here we include the uncertainty and associated risk of the streamflow changes for a robust impact assessment to agriculture. We created a baseline model and models of CC and LULCC “impact scenarios” that use: (1) the new climate projections until 2070 and (2) land cover scenarios worsened by forest loss, in a critical watershed in the Philippines. Simulations of peak flows by 26% and low flows by 63% from the baseline model improved after calibrating runoff, soil evaporation, and groundwater parameters. Using the calibrated model, impacts of both CC and LULCC in 2070 were indicated by water deficit (− 18.65%) from May to August and water surplus (12.79%) from November to December. Both CC and LULCC contributed almost equally to the deficit, but the surplus was more LULCC-driven. Risk from CC may affect 9.10% of the croplands equivalent to 0.31 million dollars, while both CC and LULCC doubled the croplands at risk (19.13%, 0.60 million dollars) in one cropping season. The findings warn for the inevitable cropping schedule adjustments in the coming decades, which both apply to irrigated and rainfed crops, and may have implications to crop yields. This study calls for better watershed management to mitigate the risk to crop production and even potential flood risks.


2021 ◽  
Author(s):  
ghasem farahmand ◽  
shariar khaledi ◽  
manijeh ghahroudi tali

Abstract Land use and land cover change (LULC) and climate change are among the major threats to the global environment. Assessing the causes of land use change and its relationship with climate change is one of the important issues that understanding its process can help better human interaction with the environment. Therefore, the purpose of this study is to evaluate the effects of climate change on changing land use and land cover. The indicators used to achieve the mentioned goal are: ((average minimum winter temperatures), Number of days (≤ 0°C), Number of days (≤-10°C) and 30-year Landsat satellite images)), CMIP5(CanESM2) model was used to predict temperature changes and CA-MARKOV model was used to predict land use changes and finally Pearson correlation coefficient test was used to measure the correlation. The results of the study indicated that, there is a direct relationship between changes of minimum winter temperatures and changing the type of cultivation and land use in Urmia city. Also, simulation of temperature changes showed that there is the highest (> 0.8) correlation between rcp4.5 scenarios and land use changes, which indicates a high probability of changes in the specified time period (2018–2033).


Sign in / Sign up

Export Citation Format

Share Document