Effects of temperature, drought, and gibberellin A4/7, and timing of treatment, on flowering in potted Piceaengelmannii and Piceaglauca grafts

1988 ◽  
Vol 18 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Stephen D. Ross

Four experiments conducted over 2 years on potted 4- to 7-year-old Piceaengelmannii and 3-year-old Piceaglauca grafts compared the effectiveness of different temperature, drought, and gibberellin A4/7 treatment regimes for promotion of flowering. With the exception of one study in which trees were not properly preconditioned, heat treatment within a polyethylene–covered house (polyhouse) promoted profuse female and male flowering in previously root-pruned P. engelmannii grafts. The optimal daytime temperature of 22–25 °C in the polyhouse was well below the 30 °C temperature for Piceaabies suggested in the literature. Timing of heat treatment was critical. Few trees produced seed or pollen cones if moved indoors before the new shoots were at least 80% elongated, with 85–95% elongation being optimal. Drought also promoted flowering but only if applied outdoors while shoots were actively elongating. Response to these cultural practices was further enhanced by spray applications of gibberellin A4/7 during the rapid growth phase. Younger P. glauca grafts that were not root-pruned or sprayed with gibberellin A4/7 failed to respond to early drought and late heat treatments, but did so the following year when these adjunct treatments were given. Response of P. engelmannii grafts to retreatment indicates that alternate-year induction, with a year's rest for cone maturation and vegetative replenishment of shoots turned reproductive, is practical and will result in sustained abundant cone production in potted trees.

Author(s):  
A. W. West

The influence of the filament microstructure on the critical current density values, Jc, of Nb-Ti multifilamentary superconducting composites has been well documented. However the development of these microstructures during composite processing is still under investigation.During manufacture, the multifilamentary composite is given several heat treatments interspersed in the wire-drawing schedule. Typically, these heat treatments are for 5 to 80 hours at temperatures between 523 and 573K. A short heat treatment of approximately 3 hours at 573K is usually given to the wire at final size. Originally this heat treatment was given to soften the copper matrix, but recent work has shown that it can markedly change both the Jc value and microstructure of the composite.


2020 ◽  
Vol 70 (12) ◽  
pp. 4519-4524

The efficiency of time-temperature treatment (T-TT) on metal melts can be microstructurally analysed through their degree of purity in non-metallic inclusions. In the case of the Ni-based super alloy under discussion (MSRR 7045) the heat treatment was the undercooling consequences both on the durability of the casting environment (ingots-refractories) and on the internal structure of the metal (porosity, microstructural isotropy). Keywords: time-temperature treatment, undercooled melt, non-metallic inclusions, purity, microstructural isotropy


Author(s):  
Mahmoud Hussien Abou-Deif ◽  
Mohamed Abdel-Salam Rashed ◽  
Kamal Mohamed Khalil ◽  
Fatma El-Sayed Mahmoud

Abstract Background Maize is one of the important cereal food crops in the world. High temperature stress causes adverse influence on plant growth. When plants are exposed to high temperatures, they produce heat shock proteins (HSPs), which may impart a generalized role in tolerance to heat stress. Proteome analysis was performed in plant to assess the changes in protein types and their expression levels under abiotic stress. The purpose of the study is to explore which proteins are involved in the response of the maize plant to heat shock treatment. Results We investigated the responses of abundant proteins of maize leaves, in an Egyptian inbred line of maize “K1”, upon heat stress through two-dimensional electrophoresis (2-DE) on samples of maize leaf proteome. 2-DE technique was used to recognize heat-responsive protein spots using Coomassie Brilliant Blue (CBB) and silver staining. In 2-D analysis of proteins from plants treated at 45 °C for 2 h, the results manifested 59 protein spots (4.3%) which were reproducibly detected as new spots where did not present in the control. In 2D for treated plants for 4 h, 104 protein spots (7.7%) were expressed only under heat stress. Quantification of spot intensities derived from heat treatment showed that twenty protein spots revealed clear differences between the control and the two heat treatments. Nine spots appeared with more intensity after heat treatments than the control, while four spots appeared only after heat treatments. Five spots were clearly induced after heat treatment either at 2 h or 4 h and were chosen for more analysis by LC-MSMS. They were identified as ATPase beta subunit, HSP26, HSP16.9, and unknown HSP/Chaperonin. Conclusion The results revealed that the expressive level of the four heat shock proteins that were detected in this study plays important roles to avoid heat stress in maize plants.


2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1365
Author(s):  
Nurul Ainaa Farhanah Mat Ramlan ◽  
Aina Syahirah Md Zin ◽  
Nur Fatihah Safari ◽  
Kim Wei Chan ◽  
Norhasnida Zawawi

In the honey industry, heat treatments are usually applied to maintain honey’s quality and shelf life. Heat treatment is used to avoid crystallisation and allow the easy use of honey, but treatment with heat might affect the antioxidant and antibacterial activities, which are the immediate health effects of honey. This study will determine the effect of heat treatment on Malaysian and Australian stingless bee honey (SBH) produced by the common bee species in both countries. Eighteen honey samples were subjected to heat at 45 °C, 55 °C and 65 °C for one hour and subsequently analysed for their total phenolic content (TPC), total flavonoid content (TFC), DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP) and minimum inhibitory concentration (MIC). The results show that all samples had high TPC, TFC and antioxidant activities before the treatment. The heat treatments did not affect (p < 0.05) the TPC, TFC and antioxidant activities in most samples, but did inhibit the antibacterial activities consistently in most of the samples, regardless of the bee species and country of origin. This study also confirms a strong correlation between TPC and TFC with FRAP activities for the non-heated and heated honey samples (p < 0.05). Other heat-sensitive bioactive compounds in SBH should be measured to control the antibacterial properties present.


2021 ◽  
Author(s):  
Giuseppe Del Guercio ◽  
Manuela Galati ◽  
Abdollah Saboori

Abstract Additive Manufacturing processes are considered advanced manufacturing methods. It would be possible to produce complex shape components from a Computer-Aided Design model in a layer-by-layer manner. Lattice structures as one of the complex geometries could attract lots of attention for both medical and industrial applications. In these structures, besides cell size and cell type, the microstructure of lattice structures can play a key role in these structures' mechanical performance. On the other hand, heat treatment has a significant influence on the mechanical properties of the material. Therefore, in this work, the effect of the heat treatments on the microstructure and mechanical behaviour of Ti-6Al-4V lattice structures manufactured by EBM was analyzed. The main mechanical properties were compared with the Ashby and Gibson model. It is very interesting to notice that a more homogeneous failure mode was found for the heat-treated samples. The structures' relative density was the main factor influencing their mechanical performance of the heat-treated samples. It is also found that the heat treatments were able to preserve the stiffness and the compressive strength of the lattice structures. Besides, an increment of both the elongation at failure and the absorbed energy was obtained after the heat treatments. Microstructure analysis of the heat-treated samples confirms the increment of ductility of the heat-treated samples with respect to the as-built one.


1996 ◽  
Vol 33 (5) ◽  
pp. 300-304
Author(s):  
Hiroshi OGAWA ◽  
Takehito KUWAYAMA ◽  
Katuhide TANAKA

Sign in / Sign up

Export Citation Format

Share Document