The Function of the Basal Filaments in the Parietal Layer of Bowman's Capsule

1973 ◽  
Vol 51 (2) ◽  
pp. 53-60 ◽  
Author(s):  
W. A. Webber ◽  
W. T. Wong

A number of cell types in the nephron have been known for some time to contain basally located filaments demonstrable by a variety of both light and electron microscopic techniques.]t has been proposed that these filaments may provide a contractile mechanism which would have implications for the control of renal function. One site in which these filaments have been observed is in the parietal layer of Bowman's capsule. The present study was designed to see if contraction of this layer of cells could be demonstrated and if so whether the basal filaments appeared to play a role in the process. Renal cortical tissue was fixed both in vivo and in vitro in the presence and absence of histamine, adrenaline, and acetylcholine and examined by conventional electron microscopic techniques. Basal folding of the cell membrane was observed particularly in the adrenaline-treated tissue and was interpreted as reflecting a conformational change in the cell such as might be expected with contraction. The relationship of this folding, however, to the arrangement of the basal filaments was such as to suggest that contraction of the filaments was not responsible for the folding observed. Alternative roles for the fibrils either as a structural framework or as a component in an attachment mechanism of the cells to the underlying basement membrane were therefore proposed.

1977 ◽  
Vol 145 (1) ◽  
pp. 136-150 ◽  
Author(s):  
A E Butterworth ◽  
J R David ◽  
D Franks ◽  
A A Mahmoud ◽  
P H David ◽  
...  

After earlier observations that antibody-dependent, cell-mediated damage to 51Cr-labeled schistosomula can be ablated by pretreatment of a mixed preparation of human peripheral blood leukocytes with an anti-eosinophil serum and complement, we investigated the cytotoxic effects of eosinophil-enriched cell preparations. Preparations containing up to 98.5% eosinophils and devoid of neutrophils were effective in mediating antibody-dependent damage to schistosomula. Preparations enriched in mononuclear cells or in neutrophils, and devoid of eosinophils, were inactive. Eosinophils from some patients with eosinophilia induced by schistosomiasis were less active on a cell-to-cell basis than cells from normal individuals. The possibility that such cells were initially blocked by immune complexes was considered, and it was found that reasonable cytotoxicity by purified eosinophils from patients with eosinophilia could be generated by overnight cultures. A possible requirement for cooperation between eosinophils and other cell types was also studied. Lymphocytes, neutrophils and monocytes failed to enhance eosinophil-mediated cytotoxicity. These results provide further evidence that the eosinophil is the only cell in man responsible for antibody-dependent, complement-independent damage to schistosomula in vitro. Eosinophils from individuals, however, differ in their cytotoxic potential by a mechanism yet to be elucidated. The possible relationship of these findings to immunity in vivo is discussed.


1992 ◽  
Vol 72 (3) ◽  
pp. 731-787 ◽  
Author(s):  
J. F. Ackland ◽  
N. B. Schwartz ◽  
K. E. Mayo ◽  
R. E. Dodson

The discovery of the various peptide factors in the gonads followed different paths. A number of factors were specifically searched for because of physiological experiments that predicted that an activity from the gonads was necessary to explain phenomena. Such was the case for gonadal steroids and for such peptide factors as inhibin, MIS, OMI, FRP, seminal plasma inhibin, relaxin, PA factor and other proteases, and ABP. In the process other factors such as activin and follistatin were serendipitously discovered. A second group of factors was discovered because in vitro experiments of various combinations of gonadal cell types failed to replicate in vivo findings, suggesting missing signals. Such substances are the panoply of growth factors aiding in differentiation and growth promotion and inhibition: LS and LI, P-Mod-S, clusterin, and various components of the ECM. Finally, and most recently, another set of peptides has been identified because immunological or molecular probes have been used to search gonadal tissue for factors originally discovered elsewhere; these include POMC, GnRH-like peptide, oxytocin, AVP, angiotensin, ANF, CRF, neural peptides, and c-mos. Our understanding of the relationship of most of these peptides to the local signals necessary for gonadal function is still very elementary. Clearly some like relaxin and inhibin function as important hormones, and ABP, for example, probably functions importantly in transporting testosterone down the tubule. Most local paracrine or autocrine peptide signals appear to act in relationship to gonadotropin levels probably in local differentiation in the process of gamete maturation, but this is only conjecture at this point. No experimental verification that any of these factors is involved in follicle selection for recruitment or for atresia is yet available. For many of the factors local receptors have not yet been identified. The richness of the variety of peptides in the gonads suggests that microanalysis of cell-cell signaling would be rewarding, but at the time of this writing such investigations are not yet possible.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Author(s):  
Gustav Ofosu

Platinum-thymine has been found to be a potent antitumor agent, which is quite soluble in water, and lack nephrotoxicity as the dose-limiting factor. The drug has been shown to interact with DNA and inhibits DNA, RNA and protein synthesis in mammalian cells in vitro. This investigation was undertaken to elucidate the cytotoxic effects of piatinum-thymine on sarcoma-180 cells in vitro ultrastructurally, Sarcoma-180 tumor bearing mice were treated with intraperitoneal injection of platinum-thymine 40mg/kg. A concentration of 60μg/ml dose of platinum-thymine was used in in vitro experiments. Treatments were at varying time intervals of 3, 7 and 21 days for in vivo experiments, and 30, 60 and 120 min., 6, 12, and 24th in vitro. Controls were not treated with platinum-thymine.Electron microscopic analyses of the treated cells in vivo and in vitro showed drastic cytotoxic effect.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Inho Hwang ◽  
Ki Choon Choi

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


Sign in / Sign up

Export Citation Format

Share Document