Calcium activation of sarcoplasmic reticulum ATPase following strenuous activity

1981 ◽  
Vol 59 (12) ◽  
pp. 1214-1218 ◽  
Author(s):  
A. N. Belcastro ◽  
M. Rossiter ◽  
M. P. Low ◽  
M. M. Sopper

The purpose of this study was to examine the effects of varying Ca2+ concentration on the Ca2+ activated sarcoplasmic reticulum (SR) ATPase activity of fast-twitch (FT) skeletal muscle at exhaustion and during recovery. Wistar rats (200 g) were assigned to control (C), exhausted (E), and three recovery groups (R) at 5, 15, and 30 min. Following exhaustion on a motor-driven treadmill, the gastrocnemius muscles from all groups were excised and frozen. Muscle samples were assayed for ATPase activity in a Ca2+ – ethyleneglycol bis (β-aminoethyl ether)-N,N′-tetraacetic acid (EGTA) buffering system. At 1.25 μM Ca2+, a significant depression in Ca2+ activated ATPase activity occurred in the E, 5R, 15R, and 30R groups (1.61 ± 0.17, 1.87 ± 0.14, 1.43 ± 0.29, and 1.62 ± 0.1 μmol Pi∙mg−1∙10 min−1) compared with C values (2.41 ± 0.34 μmol Pi∙mg−1∙10 min−1) (p ≤ 0.05). At 5.0 μM, Ca2+ activated ATPase activity remained depressed in the E, 5R, and 15R groups compared with C and 30R groups (p ≤ 0.05). At 0.75 μM Ca2+, there was no significant difference between groups (p ≥ 0.05). The results suggest that Ca2+ activated SR ATPase activity of fatigued FT muscle may contribute to the decreased force production at exhaustion.

1983 ◽  
Vol 210 (2) ◽  
pp. 339-344 ◽  
Author(s):  
C A Tate ◽  
R J Bick ◽  
T D Myers ◽  
B J R Pitts ◽  
W B Van Winkle ◽  
...  

To determine the neural influence on the function of the sarcoplasmic reticulum (SR) of fast-twitch skeletal muscle, the superior pectoralis muscle of adult chicken was denervated, and the SR was isolated at 20 days post-denervation. The isolated SR was probably derived from the longitudinal SR and was relatively free of contaminants. The protein profile of the SR was quantitatively changed after denervation with an increase in the M55 and 30000-mol.wt. proteins relative to the Ca2+-ATPase. Ca2+-dependent ATPase activity and phosphoenzyme formation were lower in the denervated-muscle SR; however, the enzyme catalytic-centre activity was similar to the control value. The decrease in Ca2+-ATPase activity in denervated-muscle SR was accompanied by a lower Ca2+ accumulation so that the relationship between Ca2+ accumulation and Ca2+-dependent ATPase activity was well maintained in the SR from denervated muscle. The data imply that denervation may result in a diminution of functional Ca2+ pump sites. Evidence is presented, though, which suggests that denervation affects a single class of Ca2+-binding sites of the Ca2+-ATPase, resulting in a lower affinity for Ca2+.


1981 ◽  
Vol 241 (2) ◽  
pp. H263-H267 ◽  
Author(s):  
A. Malhotra ◽  
S. Penpargkul ◽  
T. Schaible ◽  
J. Scheuer

To study effects of physiologic hypertrophy on contractile protein ATPases and sarcoplasmic reticulum, hypertrophy was caused in female Wistar rats by a chronic swimming program. Nonhypertrophied hearts of female control sedentary rats and rats made to run on a treadmill program were also examined. The swimming program, but not the running program, resulted in a significant increase in heart weight. Actomyosin ATPase activity was also increased by 15% in the hearts of swimmers but not runners. Similar increases were observed for Ca2+-activated myosin ATPase activity and actin-activated ATPase of myosin. Sarcoplasmic reticulum from the hearts of swimmers showed increased calcium binding and calcium uptake as a function of time and of calcium concentration. Sarcoplasmic reticulum ATPase activities were not altered by hypertrophy. These findings in physiologic hypertrophy contrast with those of pathologic hypertrophy in which ATPase activity of contractile proteins and calcium binding and uptake of sarcoplasmic reticulum have generally been found to be depressed.


2017 ◽  
Vol 122 (2) ◽  
pp. 396-405 ◽  
Author(s):  
Keita Kanzaki ◽  
Daiki Watanabe ◽  
Mai Kuratani ◽  
Takashi Yamada ◽  
Satoshi Matsunaga ◽  
...  

The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca2+-regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca2+-ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca2+-regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca2+-ATPase, undergo calpain-dependent proteolysis.


1982 ◽  
Vol 243 (3) ◽  
pp. C156-C160 ◽  
Author(s):  
D. H. Kim ◽  
F. A. Witzmann ◽  
R. H. Fitts

The effect of 6 wk of hindlimb immobilization on rat skeletal muscle sarcoplasmic reticulum (SR) was determined in the slow-twitch, type I soleus (SOL), the fast-twitch, type IIA deep region of the vastus lateralis (DVL), and the fast-twitch, type IIB superficial region of the vastus lateralis (SVL). Immobilization produced a significant decline in the Ca2+ uptake rate (Vmax) of SR vesicles from the slow SOL (0.930 +/- 0.116 to 0.365 +/- 0.071 mumol Ca2+ . mg-1 . min-1), while the SR Vmax increased in the fast SVL (2.763 +/- 0.133 to 5.209 +/- 0.687) and was unaltered in the DVL. Vesicles from the fast SVL and DVL also exhibited a higher total Ca2+ uptake capacity following immobilization. An evaluation of the time course of the immobilization-mediated effect revealed an increased Ca2+ uptake capacity in all three samples after 1 wk. In the SOL total Ca2+ uptake returned to control level after 2 wk, while in the fast-twitch muscles the higher capacities were maintained. The Ca2+-stimulated SR ATPase activity was not altered in any of the muscles studies, although the total SR ATPase activity increased twofold in the slow SOL.


1988 ◽  
Vol 8 (4) ◽  
pp. 369-378 ◽  
Author(s):  
Marie-Jeanne Loirat ◽  
Brigitte Lucas-Heron ◽  
Béatrice Ollivier ◽  
Claude Leoty

Two Ca2+ sequestering proteins were studied in fast-twitch (EDL) and slow-twitch (soleus) muscle sarcoplasmic reticulum (SR) as a function of denervation time. Ca2+-ATPase activity measured in SR fractions of normal soleus represented 5% of that measure in SR fractions of normal EDL. Denervation caused a severe decrease in activity only in fast-twich muscle. Ca2+-ATPase and calsequestrin contents were affected differently by denervation. In EDL SR, Ca2+-ATPase content decreased progressively, whereas in soleus SR, no variation was observed. Calsequestrin showed a slight increase in both muscles as a function of denervation time correlated with increased45Ca-binding. These results indicate first that Ca2+-ATPase activity in EDL was under neural control, and that because of low Ca2+-ATPase activity and content in slow-twitch muscle no variation could be detected, and secondly that greater calsequestrin content might represent a relative increasing of heavy vesicles or decreasing of light vesicles as a function of denervation time in the whole SR fraction isolated in both types of muscles.


1998 ◽  
Vol 85 (2) ◽  
pp. 619-626 ◽  
Author(s):  
Jay H. Williams ◽  
Christopher W. Ward ◽  
Espen E. Spangenburg ◽  
Reagan M. Nelson

This study examined the effects of fatigue on the functional aspects of the contractile apparatus and sarcoplasmic reticulum (SR). Frog semitendinosus muscles were stimulated to fatigue, and skinned fibers or a homogenate fraction was prepared from both fatigued and rested contralateral muscles. In fatigued fibers, maximal Ca2+-activated force of the contractile apparatus was unaltered, whereas maximal actomyosin-ATPase activity was depressed by 20%. The Ca2+ sensitivity of force was increased, whereas that of actomyosin-ATPase was not altered. Also, the rate constant for tension redevelopment was decreased at submaximal Ca2+ concentration. These latter findings suggest that fatigue slows the dissociation of force-generating myosin cross bridges. Ca2+ uptake and Ca2+-ATPase activity of the SR were depressed by 46 and 21%, respectively, in the fatigued muscles. Fatigue also reduced the rates of SR Ca2+ release evoked by AgNO3 and 4-chloro- m-cresol by 38 and 45%, respectively. During fatigue, the contractile apparatus and SR undergo intrinsic functional alterations. These changes likely result in altered force production and energy consumption by the intact muscle.


2019 ◽  
Vol 316 (5) ◽  
pp. R543-R551 ◽  
Author(s):  
Daiki Watanabe ◽  
Chihiro Aibara ◽  
Masanobu Wada

Skeletal muscles undergoing vigorous activity can enter a state of prolonged low-frequency force depression (PLFFD). This study was conducted to examine whether antioxidant treatment is capable of accelerating the recovery from PLFFD, with a focus on the function of the sarcoplasmic reticulum (SR) and myofibril. One hour before fatiguing stimulation (FS) was administered, rats received an intraperitoneal injection of Eukarion (EUK-134), which mimics the activities of superoxide dismutase and catalase. Intact muscles of the hindlimbs were electrically stimulated via the sciatic nerve until the force was reduced to ~50% of the initial force (FS). Thirty minutes after cessation of FS, the superficial regions of gastrocnemius muscles were dissected and used for biochemical and skinned-fiber analyses. Whole muscle analyses revealed that antioxidant alleviated the FS-induced decrease in the reduced glutathione content. Skinned-fiber analyses showed that the antioxidant did not affect the FS-induced decrease in the ratio of force at 1 Hz to that at 50 Hz. However, the antioxidant partially inhibited the FS-mediated decrease in the ratio of depolarization-induced force to the maximum Ca2+-activated force. Furthermore, the antioxidant completely suppressed the FS-induced increase in myofibrillar Ca2+ sensitivity. These results suggest that antioxidant treatment is ineffective in facilitating the restoration of PLFFD, probably due to its negative effect on myofibrillar Ca2+ sensitivity, which supersedes its positive effect on SR Ca2+ release.


1994 ◽  
Vol 266 (5) ◽  
pp. C1190-C1197 ◽  
Author(s):  
S. C. Kandarian ◽  
D. G. Peters ◽  
J. A. Taylor ◽  
J. H. Williams

Functional data suggest that the kinetics of force production and relaxation are slowed in hypertrophied skeletal muscle because of chronic overload. The purpose of this study was to determine whether gene expression of the slow/cardiac isoform of the sarcoplasmic reticulum (SR) Ca(2+)-adenosinetriphosphatase (ATPase) pump is upregulated in overloaded fast-twitch plantaris muscles. Increased active muscle loading was induced in rat plantaris muscles bilaterally by surgical removal of gastrocnemius and soleus muscles. Mass of the plantaris muscle was 80% greater 5 wk after surgery than in age-matched unoperated control rats (P < 0.05). Expression of the slow pump mRNA was 135% greater in hypertrophied muscles, as determined from autoradiograms of Northern blots with use of a cDNA probe specific for the slow/cardiac isoform. A monoclonal antibody (7E6) was used to quantify slow Ca2+ pump in SR vesicles with use of Western blot analysis. Densitometry of blots showed that the relative expression of the slow pump protein was 130% greater in hypertrophied plantaris muscles. Expression of the fast SR Ca2+ pump protein isoform, assessed using monoclonal antibody A52, was 25% less in hypertrophied than in control muscles. The Ca2+ uptake rate and ATPase activity of SR vesicles was approximately 15% lower in hypertrophied plantaris muscles (P < 0.05). Differential phospholamban expression could not account for changes in SR Ca2+ handling, because it could not be detected in rat slow- or fast-twitch skeletal muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 320 (5) ◽  
pp. C806-C821
Author(s):  
Daiki Watanabe ◽  
Masanobu Wada

The purpose of this study was to investigate the mechanism underlying sarcoplasmic reticulum (SR) Ca2+ leakage after in vivo contractions. Rat gastrocnemius muscles were electrically stimulated in vivo, and then mechanically skinned fibers and SR microsomes were prepared from the muscles excised 30 min after repeated high-intensity contractions. The mechanically skinned fibers maintained the interaction between dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs), whereas the SR microsomes did not. Interestingly, skinned fibers from the stimulated muscles showed increased SR Ca2+ leakage, whereas Ca2+ leakage decreased in SR microsomes from the stimulated muscles. To enhance the orthograde signal of DHPRs, SR Ca2+ leakage in the skinned fiber was measured 1) under a continuously depolarized condition and 2) in the presence of nifedipine. As a result, in either of the two conditions, SR Ca2+ leakage in the rested fibers reached a level similar to that in the stimulated fibers. Furthermore, the increased SR Ca2+ leakage from the stimulated fibers was alleviated by treatment with 1 mM tetracaine (Tet) but not by treatment with 3 mM free Mg2+ (3 Mg). Tet exerted a greater inhibitory effect on the DHPR signal to RyR than 3 Mg, although their inhibitory effects on RyR were almost similar. These results suggest that the increased Ca2+ leakage after muscle contractions is mainly caused by the orthograde signal of DHPRs to RyRs.


1985 ◽  
Vol 40 (9-10) ◽  
pp. 726-734 ◽  
Author(s):  
Maria Tereza Nunes ◽  
Antonio Carlos Bianco

Abstract The properties of the sarcoplasmic reticulum membranes isolated from slow-twitch type I soleus and fast-twitch type II psoas muscles of control and thyroxine treated rabbits were comparatively studied. Membrane yield, maximal calcium storing capacity, ATP-supported calcium uptake, calcium-dependent ATPase activity and calcium-dependent phosphoprotein formation were found to be 3-10 fold higher in psoas than in soleus preparations. Membrane yield, calcium-dependent ATPase activity, ATP-supported calcium transport and calcium-dependent phospho­ protein are at least twice enhanced in the membranes from soleus muscles of animals treated for 14-21 days with thyroxine. The corresponding capacities of the membranes from psoas muscles are not further augmented by the same thyroxine treatment. The maximal calcium storing capaci­ ty of the psoas membranes is their sole specific property which is significantly increased. The changes in the properties of the soleus muscles’ sarcoplasmic reticulum membranes are engen­dered by an increase from 5 to 30-50% in the number of type II fibres. Since the calcium transporting properties of the sarcoplasmic reticulum membranes from type II fibres qualitatively differ from those of type I fibres, thyroxine does not only affect quantitative but also qualitative parameters of the muscles’ sarcoplasmic reticulum membrane system.


Sign in / Sign up

Export Citation Format

Share Document