The kinematics of larval salamander swimming (Ambystomatidae: Caudata)

1989 ◽  
Vol 67 (11) ◽  
pp. 2756-2761 ◽  
Author(s):  
Karin vS. Hoff ◽  
Nisar Huq ◽  
V. Ann King ◽  
Richard J. Wassersug

We studied the kinematics of straightforward, constant velocity swimming in larval Ambystoma mexicanum and Ambystoma maculatum. The larvae were filmed at 200–320 frames/s and their filmed images were digitized for computer analysis. The maximum sustainable velocity we recorded was 18.7 lengths/s, which compares favorably to the maximum speed reported for similarly sized anuran larvae. The Ambystoma, however, differed greatly from tadpoles in the form of the propulsive wave in their bodies. Specifically, the maximum amplitude at the tail tip, at swimming speeds >6 lengths/s, was exceptionally high, exceeding 30% of body length; at high speed, the position of minimum amplitude was well posterior to the otic capsules and produced considerable yaw at the head; and the length of the propulsive wave in the body shortened as speed increased. All of these features characterize poor mechanical efficiency during constant velocity swimming, and indeed two measures of efficiency (propeller efficiency and stride length) confirmed the locomotor superiority of tadpoles and sub-carangiform fishes to Ambystoma larvae. The drag induced by exposed gills and limbs may account in part for the inferior performance of the salamanders. Ambystoma larvae are designed for anguilliform movement among the rocks and vegetation of the substrate, and for high acceleration over short distances, such as those used during a lunge at prey. The mechanical inferiority of Ambystoma larvae during sustained, constant velocity swimming is consistent with their microhabitat shift away from open water situations in the presence of subcarangiform fishes.

1997 ◽  
Vol 200 (13) ◽  
pp. 1863-1871 ◽  
Author(s):  
K D'Août ◽  
P Aerts

The kinematics of steady swimming at a wide range of velocities was analysed using high-speed video recordings (500 frames s-1) of eight individuals of Ambystoma mexicanum swimming through a tunnel containing stationary water. Animals in the observed size range (0.135­0.238 m total body length) prefer to swim at similar absolute speeds, irrespective of their body size. The swimming mechanism is of the anguilliform type. The measured kinematic variables ­ the speed, length, frequency and amplitude (along the entire body) of the propulsive wave ­ are more similar to those of anguilliform swimming fish than to those of tadpoles, in spite of common morphological features with the latter, such as limbs, external gills and a tapering tail. The swimming speed for a given animal size correlates linearly with the tailbeat frequency (r2=0.71), whereas the wavelength and tail-tip amplitude do not correlate with this variable. The shape of the amplitude profile along the body, however, is very variable between the different swimming bouts, even at similar speeds. It is suggested that, for a given frequency, the amplitude profile along the body is adjusted in a variable way to yield the resulting swimming speed rather than maintaining a fixed-amplitude profile. The swimming efficiency was estimated by calculating two kinematic variables (the stride length and the propeller efficiency) and by applying two hydrodynamic theories, the elongated-body theory and an extension of this theory accounting for the slope at the tail tip. The latter theory was found to be the most appropriate for the axolotl's swimming mode and yields a hydromechanical efficiency of 0.75±0.04 (mean ± s.d.), indicating that Ambystoma mexicanum swims less efficiently than do anuran tadpoles and most fishes. This can be understood given its natural habitat in vegetation at the bottom of lakes, which would favour manoeuvrability and fast escape.


1986 ◽  
Vol 122 (1) ◽  
pp. 1-12 ◽  
Author(s):  
KARIN VON SECKENDORFF HOFF ◽  
RICHARD JOEL WASSERSUG

The kinematics of swimming in larval Xenopus laevis has been studied using computer-assisted analysis of high-speed (200 frames s−1) ciné records. The major findings are as follows. 1. At speeds below 6 body lengths (L) per second, tail beat frequency is approximately 10 Hz and, unlike for most aquatic vertebrates, is not correlated with specific swimming speed. At higher speeds, tail beat frequency and speed are positively correlated. 2. Xenopus tadpoles show an increase in the maximum amplitude of the tail beat with increasing velocity up to approximately 6Ls−1. Above that speed amplitude approaches an asymptote at 20 % of body length. 3. Anterior yaw is absent at velocities below 6Ls−1, unlike for other anuran larvae, but is present at higher speeds. 4. At speeds below 6Ls−1 there is a positive linear relationship between length of the propulsive wave (λ) and specific swimming speed. At higher speeds wavelength is constant at approximately 0.8L. 5. There is a shift in the modulation of wavelength and tail beat frequency with swimming speed around 5.6Ls−1, suggesting two different swimming modes. The slower mode is used during open water cruising and suspension feeding. The faster, sprinting mode may be used to avoid predators. 6. Froude efficiencies are similar to those reported for fishes and other anuran larvae. 7. Unlike Rana and Bufo larvae, the axial muscle mass of Xenopus increases dramatically with size from less than 10% of total mass for the smallest animals to more than 45% of total mass for the largest animals. This increase is consistent with maintaining high locomotor performance throughout development.


2014 ◽  
Vol 705 ◽  
pp. 79-82
Author(s):  
Jing Jing Huang ◽  
Long Xi Zheng ◽  
Mei Qing

A two-disk rotor system under the aero-engine support structure of typical 1-0-1 was established and the dynamical characteristics were analyzed. The two-disk rotor model was integrated to the Isight. The multi-objective design optimization of the transient process was then carried out with Evolutionary Optimization Algorithm. The optimum positions of the two-disk rotor system were obtained at the specified constraints. In order to verify the validity of the design optimization, the transient test was carried out on a high-speed flexible rotor mockup. The maximum amplitude of disk 1 cross the first critical rotation speed fell 50% and the maximum amplitude of disk 2 decreased by 20%. Experimental results indicated that the optimization method could obtain the position of the flexible rotor with the minimum amplitude and improve the design efficiency and quality, which had practical significance in the design of aero-engine rotor system.


Geophysics ◽  
1986 ◽  
Vol 51 (5) ◽  
pp. 1119-1126 ◽  
Author(s):  
H. V. Ram Babu ◽  
V. Vijayakumar ◽  
D. Atchuta Rao

Magnetic anomalies may be simply analyzed using a dike model. In this model, the depth to the source is approximately 1.25 S, where S is the straight‐slope distance measured on the steepest flank. The dip of the body may be evaluated from θ, the combined magnetic angle found from the ratio of the maximum amplitude to the minimum amplitude. In the presence of remanence, the body dip δ may be found from θ only when the direction of resultant magnetization is either known or assumed, and magnetization direction may be found only if the dip is known. The minimum susceptibility contrast k of the source may be calculated from the total amplitude A and intensity T of the inducing field using the relationship k = 0.3 A/T. A large number of aeromagnetic anomalies have been interpreted using this method. A few such anomalies are presented here to illustrate the applicability of the method.


1959 ◽  
Vol 63 (585) ◽  
pp. 508-512 ◽  
Author(s):  
K. W. Mangler

When a body moves through air at very high speed at such a height that the air can be considered as a continuum, the distinction between sharp and blunt noses with their attached or detached bow shocks loses its significance, since, in practical cases, the bow wave is always detached and fairly strong. In practice, all bodies behave as blunt shapes with a smaller or larger subsonic region near the nose where the entropy and the corresponding loss of total head change from streamline to streamline due to the curvature of the bow shock. These entropy gradients determine the behaviour of the hypersonic flow fields to a large extent. Even in regions where viscosity effects are small they give rise to gradients of the velocity and shear layers with a lower velocity and a higher entropy near the surface than would occur in their absence. Thus one can expect to gain some relief in the heating problems arising on the surface of the body. On the other hand, one would lose farther downstream on long slender shapes as more and more air of lower entropy is entrained into the boundary layer so that the heat transfer to the surface goes up again. Both these flow regions will be discussed here for the simple case of a body of axial symmetry at zero incidence. Finally, some remarks on the flow field past a lifting body will be made. Recently, a great deal of information on these subjects has appeared in a number of reviewing papers so that little can be added. The numerical results on the subsonic flow regions in Section 2 have not been published before.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 593
Author(s):  
Ryota Yanagisawa ◽  
Shunsuke Shigaki ◽  
Kotaro Yasui ◽  
Dai Owaki ◽  
Yasuhiro Sugimoto ◽  
...  

In this study, we fabricated a novel wearable vibration sensor for insects and measured their wing flapping. An analysis of insect wing deformation in relation to changes in the environment plays an important role in understanding the underlying mechanism enabling insects to dynamically interact with their surrounding environment. It is common to use a high-speed camera to measure the wing flapping; however, it is difficult to analyze the feedback mechanism caused by the environmental changes caused by the flapping because this method applies an indirect measurement. Therefore, we propose the fabrication of a novel film sensor that is capable of measuring the changes in the wingbeat frequency of an insect. This novel sensor is composed of flat silver particles admixed with a silicone polymer, which changes the value of the resistor when a bending deformation occurs. As a result of attaching this sensor to the wings of a moth and a dragonfly and measuring the flapping of the wings, we were able to measure the frequency of the flapping with high accuracy. In addition, as a result of simultaneously measuring the relationship between the behavior of a moth during its search for an odor source and its wing flapping, it became clear that the frequency of the flapping changed depending on the frequency of the odor reception. From this result, a wearable film sensor for an insect that can measure the displacement of the body during a particular behavior was fabricated.


1987 ◽  
Vol 3 (3) ◽  
pp. 264-275 ◽  
Author(s):  
Alexander Bahlsen ◽  
Benno M. Nigg

Impact forces analysis in heel-toe running is often used to examine the reduction of impact forces for different running shoes and/or running techniques. Body mass is reported to be a dominant predictor of vertical impact force peaks. However, it is not evident whether this finding is only true for the real body mass or whether it is also true for additional masses attached to the body (e.g., running with additional weight or heavy shoes). The purpose of this study was to determine the effect of additional mass on vertical impact force peaks and running style. Nineteen subjects (9 males, 10 females) with a mean mass of 74.2 kg/56.2 kg (SD = 10.0 kg and 6.0 kg) volunteered to participate in this study. Additional masses were attached to the shoe (.05 and .1 kg), the tibia (.2, .4, .6 kg), and the hip (5.9 and 10.7 kg). Force plate measurements and high-speed film data were analyzed. In this study the vertical impact force peaks, Fzi, were not affected by additional masses, the vertical active force peaks, Fza, were only affected by additional masses greater than 6 kg, and the movement was only different in the knee angle at touchdown, ϵ0, for additional masses greater than .6 kg. The results of this study did not support findings reported earlier in the literature that body mass is a dominant predictor of external vertical impact force peaks.


2015 ◽  
Vol 766 ◽  
pp. 337-367 ◽  
Author(s):  
Bartosz Protas ◽  
Bernd R. Noack ◽  
Jan Östh

AbstractWe propose a variational approach to the identification of an optimal nonlinear eddy viscosity as a subscale turbulence representation for proper orthogonal decomposition (POD) models. The ansatz for the eddy viscosity is given in terms of an arbitrary function of the resolved fluctuation energy. This function is found as a minimizer of a cost functional measuring the difference between the target data coming from a resolved direct or large-eddy simulation of the flow and its reconstruction based on the POD model. The optimization is performed with a data-assimilation approach generalizing the 4D-VAR method. POD models with optimal eddy viscosities are presented for a 2D incompressible mixing layer at $\mathit{Re}=500$ (based on the initial vorticity thickness and the velocity of the high-speed stream) and a 3D Ahmed body wake at $\mathit{Re}=300\,000$ (based on the body height and the free-stream velocity). The variational optimization formulation elucidates a number of interesting physical insights concerning the eddy-viscosity ansatz used. The 20-dimensional model of the mixing-layer reveals a negative eddy-viscosity regime at low fluctuation levels which improves the transient times towards the attractor. The 100-dimensional wake model yields more accurate energy distributions as compared to the nonlinear modal eddy-viscosity benchmark proposed recently by Östh et al. (J. Fluid Mech., vol. 747, 2014, pp. 518–544). Our methodology can be applied to construct quite arbitrary closure relations and, more generally, constitutive relations optimizing statistical properties of a broad class of reduced-order models.


2021 ◽  
Vol 11 (10) ◽  
pp. 4390
Author(s):  
Carlos Sosa ◽  
Alberto Lorenzo ◽  
Juan Trapero ◽  
Carlos Ribas ◽  
Enrique Alonso ◽  
...  

The aim of this study was (I) to establish absolute specific velocity thresholds during basketball games using local positional system (LPS) and (II) to compare the speed profiles between various levels of competitions. The variables recorded were total distance (TD); meters per minute (m·min); real time (min); maximum speed (Km h−1), distance (m), percentage distance, and percentage duration invested in four speed zones (standing–walking; jogging; running; and high-speed running). Mean and standard deviation (±SD) were calculated, and a separate one-way analysis of variance was undertaken to identify differences between competitions. TD (3188.84 ± 808.37 m) is covered by standing–walking (43.51%), jogging (36.58%), running (14.68%), and sprinting (5.23%) activities. Overall, 75.22% of the time is invested standing–walking, jogging (18.43%), running (4.77%), and sprinting (1.89%). M·min (large effect size), % duration zone 2 (moderate effect size); distance zone 4 (large effect size), and % distance zone 4 (very large effect size) are significantly higher during junior than senior. However, % distance zone 1 (large effect size) and % duration zone 1 (large effect size) were largely higher during senior competition. The findings of this study reveal that most of the distance and play time is spent during walking and standing activities. In addition, the proportion of time spent at elevated intensities is higher during junior than in senior competition.


2003 ◽  
Vol 9 (7) ◽  
pp. 791-804 ◽  
Author(s):  
John Dzielski ◽  
Andrew Kurdila

At very high speeds, underwater bodies develop cavitation bubbles at the trailing edges of sharp corners or from contours where adverse pressure gradients are sufficient to induce flow separation. Coupled with a properly designed cavitator at the nose of a vehicle, this natural cavitation can be augmented with gas to induce a cavity to cover nearly the entire body of the vehicle. The formation of the cavity results in a significant reduction in drag on the vehicle and these so-called high-speed supercavitating vehicles (HSSVs) naturally operate at speeds in excess of 75 m s-1. The first part of this paper presents a derivation of a benchmark problem for control of HSSVs. The benchmark problem focuses exclusively on the pitch-plane dynamics of the body which currently appear to present the most severe challenges. A vehicle model is parametrized in terms of generic parameters of body radius, body length, and body density relative to the surrounding fluid. The forebody shape is assumed to be a right cylindrical cone and the aft two-thirds is assumed to be cylindrical. This effectively parametrizes the inertia characteristics of the body. Assuming the cavitator is a flat plate, control surface lift curves are specified relative to the cavitator effectiveness. A force model for a planing afterbody is also presented. The resulting model is generally unstable whenever in contact with the cavity and stable otherwise, provided the fin effectiveness is large enough. If it is assumed that a cavity separation sensor is not available or that the entire weight of the body is not to be carried on control surfaces, limit cycle oscillations generally result. The weight of the body inevitably forces the vehicle into contact with the cavity and the unstable mode; the body effectively skips on the cavity wall. The general motion can be characterized by switching between two nominally linear models and an external constant forcing function. Because of the extremely short duration of the cavity contact, direct suppression of the oscillations and stable planing appear to present severe challenges to the actuator designer. These challenges are investigated in the second half of the paper, along with several approaches to the design of active control systems.


Sign in / Sign up

Export Citation Format

Share Document