Developmental and seasonal changes in resting metabolic rates of captive female grey seals

1997 ◽  
Vol 75 (11) ◽  
pp. 1781-1789 ◽  
Author(s):  
Patrice Boily ◽  
David M. Lavigne

Resting metabolic rate (RMR) data obtained from five juvenile and three adult female grey seals (Halichoerus grypus) in captivity over a period of 3.5 years were examined for developmental and seasonal changes. Three juveniles exhibited a significant relationship between log10 RMR and log10 mass, with individual slopes ranging from 0.42 to 1.62. Two of these exhibited a significant relationship between log10 RMR and log10 age. The remaining two juveniles and the three adults exhibited no significant relationship between RMR and body mass. With increasing size and age, RMRs of juveniles approached predicted values for adult mammals, but the large variation made it difficult to establish the precise age at which they achieved an adult-like RMR. RMRs of adults and juveniles exhibited marked seasonal changes. In juveniles, seasonal changes in RMR were limited to the annual moult, when the average RMR was 35% higher than during the rest of the year. In adults, changes in RMR were not limited to the time of the annual moult; rather, RMR was lower (by up to 50%) in the summer than during other seasons.

2019 ◽  
Vol 69 (2) ◽  
pp. 199-212
Author(s):  
Yun-Tao Yao ◽  
Yu Du ◽  
Meng-Chao Fang ◽  
Long-Hui Lin ◽  
Xiang Ji

Abstract We have studied resting metabolic rate (RMR) of the water monitor lizard (Varanus salvator) at different developmental stages (hatchling, juvenile and adult) to test whether individuals at different ages differ in RMR when controlling for the effects of body mass. We found that: 1) resting metabolic rates of hatchlings, juveniles and adults were all positively related to their body mass with the same coefficients and that 2) developmental stage had a non-significant influence on the resting metabolic rate when controlling for the effects of body mass. Our results suggest that variation in resting metabolic rate for V. salvator is directly caused by body mass differences, which conforms to previous findings in mammal species and birds.


1982 ◽  
Vol 60 (6) ◽  
pp. 1412-1416 ◽  
Author(s):  
Justin D. Congdon ◽  
Donald W. Tinkle

Metabolic rates of free-ranging Sceloporus graciosus (Sauria: Iguanidae) were measured during the summer using doubly labeled H2O. Adults of either sex and juveniles did not differ in field metabolic rates (0.26 mL CO2∙g−1∙h−1or 160 J∙g−1∙day−1). Field metabolic rates were 2.4 times the resting metabolic rate, and activity respiration was 3.1 times the resting metabolic rate at lizard activity temperatures. Activity accounted for 59% of the energy consumption due to respiration. Calculated rates of feeding indicated a 415 J∙day−1 deficit in metabolizable energy intake, and this was reflected in rate of loss of body mass throughout the study. Daily energy harvested by 200 lizards (31 kJ∙day−1), which approximates densities (per hectare) on the study area, would supply only 40% of the daily energy requirements of one insectivorous bird with similar body mass and activity level of a Phainopepla (79 kJ∙day−1).


2020 ◽  
Vol 158 (5) ◽  
pp. 431-437
Author(s):  
Michael Kam ◽  
Shaher El-Meccawi ◽  
Arieh Brosh ◽  
A. Allan Degen

AbstractSheep are grazers and goats are intermediate feeders. By employing O2 consumption and heart rate measurements, resting metabolic rate (RMR) and field metabolic rate (FMR) were determined in four male fat-tailed Awassi sheep (44.0 ± 3.94) and four male Baladi goats (35.5 ± 5.42 kg) that were co-grazing natural pasture in the Negev Desert. There were 67.7 ± 3.75 g DM/m2 of herbaceous vegetation biomass, which was rapidly becoming senescent and more fibrous. We hypothesized that FMR of these desert-adapted ruminants would be relatively low when compared to other sheep and goat breeds, as animals in arid areas tend to have low metabolic rates. Both sheep (n = 6) and goats (n = 6) foraged 71% of the allotted 11 h free-pasture period; however, sheep grazed more than goats (P < 0.001); whereas goats browsed more than sheep (P < 0.001). RMR was higher (P = 0.007) in sheep than in goats (529 ± 23.5 v. 474 ± 25.4 kJ/kg0.75 BW/d), but FMR did not differ between species (618 ± 55.7 v. 613 ± 115.2 kJ/kg0.75 BW/d). In addition, the cost of activities, as a proportion of FMR, did not differ between sheep and goats; FMR increased by 89 kJ/kg0.75 BW/d or 17% in sheep and by 138 kJ/kg0.75 BW/d or 29% in goats. In comparing FMRs of sheep and goats in this study with these species in other studies, differences were inconsistent and, therefore, our hypothesis was not supported.


2019 ◽  
Vol 286 (1911) ◽  
pp. 20191693 ◽  
Author(s):  
Boël Mélanie ◽  
Romestaing Caroline ◽  
Voituron Yann ◽  
Roussel Damien

Metabolic activity sets the rates of individual resource uptake from the environment and resource allocations. For this reason, the relationship with body size has been heavily documented from ecosystems to cells. Until now, most of the studies used the fluxes of oxygen as a proxy of energy output without knowledge of the efficiency of biological systems to convert oxygen into ATP. The aim of this study was to examine the allometry of coupling efficiency (ATP/O) of skeletal muscle mitochondria isolated from 12 mammal species ranging from 6 g to 550 kg. Mitochondrial efficiencies were measured at different steady states of phosphorylation. The efficiencies increased sharply at higher metabolic rates. We have shown that body mass dependence of mitochondrial efficiency depends on metabolic intensity in skeletal muscles of mammals. Mitochondrial efficiency positively depends on body mass when mitochondria are close to the basal metabolic rate; however, the efficiency is independent of body mass at the maximum metabolic rate. As a result, it follows that large mammals exhibit a faster dynamic increase in ATP/O than small species when mitochondria shift from basal to maximal activities. Finally, the invariant value of maximal coupling efficiency across mammal species could partly explain why scaling exponent values are very close to 1 at maximal metabolic rates.


2007 ◽  
Vol 292 (6) ◽  
pp. R2115-R2121 ◽  
Author(s):  
Melanie F. Brown ◽  
Tyson P. Gratton ◽  
Jeffrey. A. Stuart

The allometric scaling of metabolic rate with organism body mass can be partially accounted for by differences in cellular metabolic rates. For example, hepatocytes isolated from horses consume almost 10-fold less oxygen per unit time as mouse hepatocytes [Porter and Brand, Am J Physiol Regul Integr Comp Physiol 269: R226–R228, 1995]. This could reflect a genetically programmed, species-specific, intrinsic metabolic rate set point, or simply the adaptation of individual cells to their particular in situ environment (i.e., within the organism). We studied cultured cell lines derived from 10 mammalian species with donor body masses ranging from 5 to 600,000 g to determine whether cells propagated in an identical environment (media) exhibited metabolic rate scaling. Neither metabolic rate nor the maximal activities of key enzymes of oxidative or anaerobic metabolism scaled significantly with donor body mass in cultured cells, indicating the absence of intrinsic, species-specific, cellular metabolic rate set points. Furthermore, we suggest that changes in the metabolic rates of isolated cells probably occur within 24 h and involve a reduction of cellular metabolism toward values observed in lower metabolic rate organisms. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms. To examine the effect of oxygen on steady-state cellular respiration rates, we grew cells under a variety of physiologically relevant oxygen regimens. Long-term exposure to higher medium oxygen levels increased respiration rates of all cells, consistent with the hypothesis that higher rates of oxygen delivery in smaller mammals might increase cellular metabolic rates.


2010 ◽  
Vol 57 (3-4) ◽  
pp. 221-227 ◽  
Author(s):  
Katarina Melzer ◽  
Yves Schutz ◽  
Nina Soehnchen ◽  
Veronique Othenin Girard ◽  
Begona Martinez de Tejada ◽  
...  

1986 ◽  
Vol 66 (4) ◽  
pp. 937-944 ◽  
Author(s):  
M. OKAMOTO ◽  
J. B. ROBINSON ◽  
R. J. CHRISTOPHERSON ◽  
B. A. YOUNG

Resting and summit metabolic rates were measured in 13 newborn (2.5–15 h old) male Holstein calves exposed to warm and cold tempertures in a water immersion system. Six calves were bottle fed 1 kg of colostrum 30 min before the measurements commenced. In the remaining seven calves, colostrum was withheld until after the end of the measurement period. There were no significant effects of colostrum feeding on resting or summit metabolic rates or the time required for rectal temperature to drop to 35 °C when the calves were immersed in cold water. The time required for rectal temperature to drop to 35 °C increased as the body weight of the calves increased; for each kilogram additional body weight, cooling was delayed for an extra 2.9 min. The resting metabolic rate averaged for both feeding treatments was 2.0 ± 0.1 W kg−1 while mean rectal temperature was 39.1 ± 0.2 °C. Mean summit metabolic rate was 7.2 ± 0.4 W kg−1 and occurred at a mean rectal temperature of 35.4 ± 0.3 °C. The average ratio of the summit to resting metabolic rate was 3.7 ± 0.2. Cooling via water immersion was associated with increases in plasma levels of glucose and free fatty acids. The feeding of 1 kg of colostrum 30 min prior to exposure to acute cold did not improve the apparent resistance of the calves to hypothermia. Key words: Newborn calf, summit metabolism, cold tolerance


1993 ◽  
Vol 71 (9) ◽  
pp. 1787-1792 ◽  
Author(s):  
L. C. Cuyler ◽  
N. A. Øritsland

Lying and standing metabolic rates were determined for two tame Svalbard reindeer while the animals were in their winter lethargic state during January and February. Mean nonfasting metabolic rates for the 59-kg animals were 1.25 W∙kg−1 for lying and 1.64 W∙kg−1 for standing at rest. So the metabolic rate for standing at rest was about 1.3 times the lying resting metabolic rate (RMR). For Svalbard reindeer the lying RMR was 66–78% of the values for other reindeer/caribou, and was 78–89% of the predicted value. The standing RMR was 44–88% of the values from other reindeer/caribou. Total body thermal conductance was 1.95 ± 0.17 W∙°C−1 for lying and 3.08 ± 0.77 W∙°C−1 for standing at rest. The daily energy expenditure during winter was estimated to be about 9654 kJ∙day−1 or 112 W, and was 1.5 times Kleiber's predicted basal metabolic rate. By remaining lying 45% of the time rather than 35% Svalbard reindeer may conserve the equivalent of about 15 days' energy requirement over the winter. With locomotion at 2% of the winter daily activity budget, the Svalbard reindeer conserve about 21 days' energy expenditure, more than that if locomotion were 8.2% of the budget as in caribou (Boertje 1985). Thus, their low energy expenditures for lying and standing and their sedentary activity budget may be considered energy-saving and survival strategies. It is possible that disturbances, which cause the animals to increase activity, may have a detrimental effect on their overall winter energy balance.


Sign in / Sign up

Export Citation Format

Share Document