PHASE SYNCHRONIZATION IN BRAIN NETWORKS DERIVED FROM CORRELATION BETWEEN PROBABILITIES OF RECURRENCES IN FUNCTIONAL MRI DATA

2013 ◽  
Vol 23 (02) ◽  
pp. 1350003 ◽  
Author(s):  
D. RANGAPRAKASH ◽  
XIAOPING HU ◽  
GOPIKRISHNA DESHPANDE

It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order dependencies. In this study, we propose a framework where in phase synchronization (PS) between brain regions is characterized using a new metric "correlation between probabilities of recurrence" (CPR) and subsequent graph-theoretic analysis of the ensuing networks. We applied this method to resting state fMRI data obtained from human subjects with and without administration of propofol anesthetic. Our results showed decreased PS during anesthesia and a biologically more plausible community structure using CPR rather than linear correlation. We conclude that CPR provides an attractive nonparametric method for modeling interactions in brain networks as compared to standard correlation for obtaining physiologically meaningful insights about brain function.

2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 971-971
Author(s):  
Michelle Case ◽  
Clara Zhang ◽  
John Mundahl ◽  
Yvonne Datta ◽  
Stephen C Nelson ◽  
...  

Abstract Sickle cell disease (SCD) is associated with impaired cognitive function, pain, cerebral stroke and other neural dysfunctions suggestive of altered brain function. The most common reason for hospitalization of SCD patients is pain. Sickle pain is unique compared to other clinical pain conditions because it includes chronic pain as well as acute pain due to vasoocclusive crisis. The neuropathic and nociceptive aspects of pain in SCD make pain treatment challenging. Opioids, the most common analgesics, are associated with liabilities, such as addiction and tolerance. As a result, patients are often under-treated because of a lack of an objective pain measurement system. We therefore sought to develop an unbiased pain quantification method using non-invasive imaging techniques to recognize the biomarkers of pain and altered brain function. We examined the brain network connectivity in SCD patients (N=14) and healthy controls (N=13) to identify altered activity between the two groups that can be used as biomarkers for chronic pain. All experimental procedures were approved by the IRB of the University of Minnesota, and all subjects gave written informed consent before participating in the study. Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) were simultaneously recorded while the subjects were in a wakeful resting state. A 3T Siemens Trio whole-body scanner and a 16 channel head coil with an echo-planar imaging (EPI) sequence were used to acquire fMRI data. EEG data was recorded using a 64-channel EEG cap and MR-compatible amplifiers. Seed-based region of interest (ROI) analysis was performed on the fMRI data using Brain Voyager QX software. EEG informed fMRI (EEG-fMRI) was performed for power and microstate analysis using Matlab and SPM8 software. Statistical activation maps (p<0.001, uncorrected) were generated from general linear models (GLM) based on the time courses found from power and microstate analysis. Seeds were placed in the insula regions, and the functional connectivity between the left and right insula appeared to be stronger in SCD patients than in healthy controls. This result was verified in EEG-fMRI analysis. Activation of the insula and striatum regions positively correlated with the beta band in SCD patients, where healthy controls showed less activation in the insula in the same frequency band. Microstates corresponding to insula activation were observed in both healthy controls and SCD patients; however, activation seems stronger in SCD patients. Activation in the striatum regions was also observed in microstates for SCD patients, but not for healthy controls. These results show that the insula and striatum regions have greater activation in SCD patients compared to controls, and that patients have altered brain connectivity during resting state. Insula activation could be related to the salience network, a resting state network that is responsible for processing external input, or to pain processing. The insula and striatum are some of the common brain regions that have been shown to be active during painful stimuli. This altered activation could be caused by sickle pain and could be a potential biomarker of pain intensity. Due to the non-invasive nature of these quantitative data, this method can have applications in the unbiased objective quantification of pain and treatment outcomes. Altered connectivity observed in SCD patients can also be used to help better understand the neural pathophysiology of sickle pain and can lead to better management strategies for these patients. This work was supported in part by NIH grant U01-HL117664 and NSF IGERT grant DGE-1069104. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Author(s):  
Maryam Falahpour ◽  
Catie Chang ◽  
Chi Wah Wong ◽  
Thomas T. Liu

AbstractChanges in vigilance or alertness during a typical resting state fMRI scan are inevitable and have been found to affect measures of functional brain connectivity. Since it is not often feasible to monitor vigilance with EEG during fMRI scans, it would be of great value to have methods for estimating vigilance levels from fMRI data alone. A recent study, conducted in macaque monkeys, proposed a template-based approach for fMRI-based estimation of vigilance fluctuations. Here, we use simultaneously acquired EEG/fMRI data to investigate whether the same template-based approach can be employed to estimate vigilance fluctuations of awake humans across different resting-state conditions. We first demonstrate that the spatial pattern of correlations between EEG-defined vigilance and fMRI in our data is consistent with the previous literature. Notably, however, we observed a significant difference between the eyes-closed (EC) and eyes-open (EO) conditions finding stronger negative correlations with vigilance in regions forming the default mode network and higher positive correlations in thalamus and insula in the EC condition when compared to the EO condition. Taking these correlation maps as “templates” for vigilance estimation, we found that the template-based approach produced fMRI-based vigilance estimates that were significantly correlated with EEG-based vigilance measures, indicating its generalizability from macaques to humans. We also demonstrate that the performance of this method was related to the overall amount of variability in a subject’s vigilance state, and that the template-based approach outperformed the use of the global signal as a vigilance estimator. In addition, we show that the template-based approach can be used to estimate the variability across scans in the amplitude of the vigilance fluctuations. We discuss the benefits and tradeoffs of using the template-based approach in future fMRI studies.


2017 ◽  
Author(s):  
Matthieu Gilson

AbstractSince the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping - determined by EC - for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data - movie viewing versus resting state - illustrates that changes in excitability and changes in brain coordination go hand in hand.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1156 ◽  
Author(s):  
Yanbing Jia ◽  
Huaguang Gu

Identifying brain regions contained in brain functional networks and functions of brain functional networks is of great significance in understanding the complexity of the human brain. The 160 regions of interest (ROIs) in the human brain determined by the Dosenbach’s template have been divided into six functional networks with different functions. In the present paper, the complexity of the human brain is characterized by the sample entropy (SampEn) of dynamic functional connectivity (FC) which is obtained by analyzing the resting-state functional magnetic resonance imaging (fMRI) data acquired from healthy participants. The 160 ROIs are clustered into six clusters by applying the K-means clustering algorithm to the SampEn of dynamic FC as well as the static FC which is also obtained by analyzing the resting-state fMRI data. The six clusters obtained from the SampEn of dynamic FC and the static FC show very high overlap and consistency ratios with the six functional networks. Furthermore, for four of six clusters, the overlap ratios corresponding to the SampEn of dynamic FC are larger than that corresponding to the static FC, and for five of six clusters, the consistency ratios corresponding to the SampEn of dynamic FC are larger than that corresponding to the static FC. The results show that the combination of machine learning methods and the FC obtained using the blood oxygenation level-dependent (BOLD) signals can identify the functional networks of the human brain, and nonlinear dynamic characteristics of the FC are more effective than the static characteristics of the FC in identifying brain functional networks and the complexity of the human brain.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S195-S196
Author(s):  
A Thomann ◽  
M Schmitgen ◽  
D Kmuche ◽  
M Griebe ◽  
M Ebert ◽  
...  

Abstract Background Fatigue is common in patients with inflammatory bowel diseases (IBD). It occurs in up to 80% of patients with active disease, but also a considerable proportion of patients in remission, and significantly affects quality of life. The underlying mechanisms are still poorly understood, and it is still unclear which patients will suffer from fatigue even in luminally quiescent disease. Task-based brain functional studies have examined neural correlates of fatigueability and found changes in the orbitofrontal cortex (OFC), among other regions. To the best our knowledge, the relationship between brain function and fatigue in IBD has not been investigated. This study aimed to examine the association between fatigue and resting-state brain function in remitted IBD patients. Methods We obtained resting-state-functional MRI (rs-fMRI) data from 45 IBD patients in stable remission without current steroid or biological therapy and 17 healthy controls (HCs). Fatigue was assessed with Würzburger Erschöpfungsinventar Multiple Sklerose (WEIMuS). Preprocessing of rs-fMRI-data and calculation of amplitude of low frequency fluctuations (ALFF) was performed using the Data Processing Assistant for rs-fMRI. The resulting individual maps were analysed via second-level SPM multiple regression models in patients and HC to test for correlations between ALFF data and WEIMuS scores. Age, gender and mean framewise displacement were included as covariates of no interest and results were displayed at p &lt; 0.001 (peak level) with a threshold of spatial extent (k) according to the expected voxels per cluster estimated by SPM. Results Fatigue scores did not differ significantly between patients and controls (mean WEIMuS-scores 17.9 (SD 13.9) vs. 12.3 (SD 16.5), p = .17). Proportions of participants with fatigue scores above the cutoff (&gt;32P.) were nearly identical in patients and HC (8/45 vs. 3/17). In patients, fatigue scores correlated positively with ALFF in the right central operculum and negatively with ALFF in the left OFC and left cerebellum (all p &lt; .001, Figure 1). Fatigue and ALFF in the left cerebellum were also found to correlate in HC. Conclusion This study shows fatigue-associated changes in brain activity in several brain regions. The negative association between fatigue and ALFF in the left OFC of IBD patients was not seen in HC, indicating that reduced ALFF in the OFC may represent a neural correlate of IBD-related fatigue. The OFC is thought to be involved in decision-making, which is described to be impaired in many fatigued IBD patients. If the association between fatigue and brain function detected in our study is confirmed in longitudinal IBD studies, these regions could serve as biomarkers when targeting fatigue in IBD.


Author(s):  
Zhaoyue Shi ◽  
Khue Tran ◽  
Christof Karmonik ◽  
Timothy Boone ◽  
Rose Khavari

Abstract Background Several studies have reported brain activations and functional connectivity (FC) during micturition using functional magnetic resonance imaging (fMRI) and concurrent urodynamics (UDS) testing. However, due to the invasive nature of UDS procedure, non-invasive resting-state fMRI is being explored as a potential alternative. The purpose of this study is to evaluate the feasibility of utilizing resting states as a non-invasive alternative for investigating the bladder-related networks in the brain. Methods We quantitatively compared FC in brain regions belonging to the bladder-related network during the following states: ‘strong desire to void’, ‘voiding initiation (or attempt at voiding initiation)’, and ‘voiding (or continued attempt of voiding)’ with FC during rest in nine multiple sclerosis women with voiding dysfunction using fMRI data acquired at 7 T and 3 T. Results The inter-subject correlation analysis showed that voiding (or continued attempt of voiding) is achieved through similar network connections in all subjects. The task-based bladder-related network closely resembles the resting-state intrinsic network only during voiding (or continued attempt of voiding) process but not at other states. Conclusion Resting states fMRI can be potentially utilized to accurately reflect the voiding (or continued attempt of voiding) network. Concurrent UDS testing is still necessary for studying the effects of strong desire to void and initiation of voiding (or attempt at initiation of voiding).


Author(s):  
Stefan Frässle ◽  
Samuel J. Harrison ◽  
Jakob Heinzle ◽  
Brett A. Clementz ◽  
Carol A. Tamminga ◽  
...  

Abstract“Resting-state” functional magnetic resonance imaging (rs-fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but limited to small networks.Here, we show that a method recently developed for task-fMRI – regression dynamic causal modeling (rDCM) – extends to rs-fMRI and offers both directional estimates and scalability to whole-brain networks. First, simulations demonstrate that rDCM faithfully recovers parameter values over a wide range of signal-to-noise ratios and repetition times. Second, we test construct validity of rDCM in relation to an established model of effective connectivity, spectral DCM. Using rs-fMRI data from nearly 200 healthy participants, rDCM produces biologically plausible results consistent with estimates by spectral DCM. Importantly, rDCM is computationally highly efficient, reconstructing whole-brain networks (>200 areas) within minutes on standard hardware. This opens promising new avenues for connectomics.


Sign in / Sign up

Export Citation Format

Share Document