THE NEW HEAT TREATMENT TECHNOLOGY OF A356 ALUMINIUM ALLOY PREPARED BY PTC

2009 ◽  
Vol 23 (06n07) ◽  
pp. 906-913 ◽  
Author(s):  
LIANYONG ZHANG ◽  
YANHUA JIANG ◽  
ZHUANG MA ◽  
WENKUI WANG

Phase Transition Cooling (PTC), using the absorbed latent heat during the melting of phase transition cooling medium to cool and solidify alloys in the process of casting, is a new casting technology. Specimens of A356 casting aluminum alloy were prepared by this method in the paper. The new heat treatment process (cast and then aging directly without solid solution) of A356 alloy was performed. For comparison, the conventional T6 heat treatment (solution and then aging treatment) was performed too. The mechanical properties of A356 alloy with different heat treatments were measured by tensile strength testing methods and microstructures of the alloy with different heat treatment process were investigated by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-rays diffraction (XRD) and transmission electron microscopy (TEM) too. The results show that ultimate tensile strength (UTS) of A356 alloy with the new heat treatment process is much higher than that with conventional heat treatment while the elongations with the two heat treatment processes are very close. This is due to the grain refinement obtained after PTC processing.

Author(s):  
Amanda Skalitzky ◽  
Stuart Coats ◽  
Ramsis Farag ◽  
Austin Gurley ◽  
David Beale

Abstract The functional properties of Nitinol (NiTi) are set by composition, production process, and post-production heat treatment and cold working. Post-production heat treating is dependent on two main parameters: anneal temperature and aging time. Most heat-treating processes performed by researchers generally consist of simple temperature soaks at specified aging times. However, there are drawbacks to this method. More complex heat treatments can result in performance improvements, but they are difficult to implement and often proprietary to manufacturers and therefore not widely used by researchers. By designing a Continuously-Fed heat treatment System (CFS), this work demystifies this complex heat-treatment process by rapidly heat-treating NiTi wire samples across a range of annealing temperatures, soak times, and tensions with little human intervention. This automated process ensures samples are created in a consistent manner and results in a much more consistent end-product when compared to conventional heat-treating methods. Using the CFS, a gamut of samples with varying annealing temperatures (400–550°C) and aging times (1–3 minutes) were created with 0.25mm diameter high-temperature actuator wire initially in the ‘as-drawn’ condition. Differential Scanning Calorimetry (DSC) analysis was performed to determine how the transition temperature(s) change with the various heat-treating parameters and the mechanical properties of the wire were determined utilizing a tensile test. The experimental results demonstrate the benefits of the CFS and are compared to those of a more conventional heat treatment process. Experimental results show that high-performance Nitinol actuator behavior can consistently be achieved using the CFS. Optimal heat treatment processes can be determined quickly experimentally.


Author(s):  
J. Arun Prakash ◽  
P. Shanmughasundaram ◽  
M. Vemburaj ◽  
P. Gowtham

This work deals with the examination of the mechanical properties of Aluminium (LM6) reinforced with iron oxide (Fe2O3). Stir casting process is used to formulate the composite sampling by varying iron oxide in 5% and 10% by weight. Three different heat treatment process of hardening, annealing and normalizing is carried out on samples of aluminium (LM6), aluminium (LM6) + 5% Fe2O3 and aluminium (LM6) + 10% Fe2O3. Composite specimens are tested to analyze the mechanical properties such as hardness, yield stress, tensile strength and elongation. Present reinforcement specks enabled the alloy to preserve higher hardness during the heat treatment. Results have shown substantial improvements in properties of the specimens with various compositions of reinforcement.


2005 ◽  
Vol 495-497 ◽  
pp. 907-912 ◽  
Author(s):  
Suk Hoon Kang ◽  
Hee Suk Jung ◽  
Woong Ho Bang ◽  
Jae Hyung Cho ◽  
Kyu Hwan Oh ◽  
...  

This paper studies the microstructure of drawn gold wires to equivalent strain of 10 and to equivalent strain of 8.5 then heat-treated. The texture of gold wire drawn to strain of 10 is mainly composed of <100> and <111> fibers. Tensile strength of the gold wire increases with <111> fiber fraction, while the grain size does not appear to affect the tensile property. With an exception at heat treatment at 600oC, the texture of gold wire drawn the strain of 8.5 is replaced with <100> fiber component by heat treatment process at 400~700oC. Heat treatment at 600oC produces <110> fiber or <112> fiber, depending upon annealing time.


2015 ◽  
Vol 727-728 ◽  
pp. 322-326 ◽  
Author(s):  
Shi Lu Zhao ◽  
Zhen Zhang ◽  
Lian Chong Qu ◽  
Jun Zhang ◽  
Jian Ming Wang ◽  
...  

Effects of heat treatment process of quenching and tempering under different temperature conditions on mechanical properties of X70 grade pipeline steel bends were studied. Brinell hardness, yield strength, tensile strength, elongation and impact absorbing energy of the bends were tested by using hardness tester, cupping machine and impact testing machine, respectively. It shows that the best heat treatment process of the X70 grade pipeline steel bends is quenching at 890 °Cand thermal insulation for 26 min then water cooling followed by tempering at 590 °C and thermal insulation for 60 min then air cooling. Furthermore, the resulting hardness, yield strength, tensile strength, yield ratio, elongation and impact absorbing energy reach HB230, 595 MPa, 725 MPa, 0.82, 28% and 300 J respectively, which has excellent comprehensive mechanical properties.


2010 ◽  
Vol 654-656 ◽  
pp. 90-93 ◽  
Author(s):  
Xiao Dong Wang ◽  
Zheng Hong Guo ◽  
Yong Hua Rong

A novel heat treatment process, that is, quenching-partitioning-tempering (Q-P-T) process, has been developed as a new way to obtain ultrahigh strength martensitic structural steel containing retained austenite and alloying carbide. In order to display merit of the Q-P-T process, a medium carbon Nb-microalloyed steel is treated by Q-P-T 1-step process and Q-P-T 2-step process, as well as treated by the transformation induced plasticity heat treatment process and quenching and tempering process, respectively. The results show that Q-P-T samples possess better mechanical properties than those treated by other heat treatment processes. The origin of the good mechanical properties is analyzed based on the phase and microstructure characterization using X-ray diffraction, scanning electron microscopy and transmission electron microscopy.


2010 ◽  
Vol 97-101 ◽  
pp. 752-755 ◽  
Author(s):  
Jia Qi Zhang ◽  
Yi Long Liang ◽  
Song Xiang ◽  
Xiao Di Yang ◽  
Ming Yang

The effect of the heat treatment process parameters on the mechanical properties and microstructure of SWRS82B wire rods were investigated. Specimens were austenitized at 850°C~900°C and held at 500°C~600°C. The results show that the interlamellar spacing and the pearlite block size become finer with the decrease of the isothermal temperature. At the same isothermal temperature condition, the interlamellar spacing decreases with the increase of austenitizing temperature. The fine interlamellar spacing increases the yield strength and ultimate tensile strength.


2011 ◽  
Vol 233-235 ◽  
pp. 1009-1013
Author(s):  
Cai Zhao ◽  
Di Tang

The mechanical properties of Low Carbon Si-Mn Q&P steel are strongly affected by the conditions of heat treatment. Microstructures and mechanical properties of Low Carbon Si-Mn Q&P steel at different partitioning temperature and holding time was investigated. The microstructure was analysed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that the microstructure of Q&P steel is carbon-depleted lath martensite and carbon enriched retained austenite. The retained austenite appear film-type between the laths. Higher partitioning temperature and longer partitioning time can obtain more retained austenite. It is shown that with increasing partitioning time ultimate tensile strength decreases, while elongation increases obviously. Carbon-enriched metastable retained austenite is considered beneficial because the TRIP phenomenon during deformation can contribute to formability and energy absorption.


INFO-TEKNIK ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 193
Author(s):  
R. N. Akhsanu Takwim ◽  
Kris Witono ◽  
Pondi Udianto

During the installation process, copper pipes for air conditioning will experience a very large deformation due to straightening and bending following the installation path. Hardening strains occur that result in changes in mechanical properties in this case decreases ductility making it difficult to do the connecting process with flaring. Studies need to be carried out to restore the mechanical properties of copper pipes that have been used, including the heat treatment process on copper pipes, so that used copper pipes have a better benefit value than having to be recycled. The temperature of the heat treatment is varied from 400oC, 500 oC and 600 oC. Tensile test results show that at annealed temperature of 400 oC has the highest tensile strength of 125.81 N / mm2 and proportional limit stress of 40.52 N / mm2. Whereas in the microhardness test, the highest hardness occurs also at annealed temperature of 400 oC which is equal to 50.8 HV.


2012 ◽  
Vol 11 (2) ◽  
Author(s):  
Koos Sarjono

Steel represents a metallic material which is still dominantly used in the engineering industry and mechanical construction. In order to fulfil the industrial demand, the high quality and mechanical properties of steel has to be always available.It is necessary to conduct a heat-treatment process to identify the improvement of mechanical properties and microstructure of steel JIS G 4051 grade S 45 C .Results of the heat-treatment process indicate that the maximum tensile strength of the investigated steel is 1074 MPa , it is earning from the warm-up temperature 860 °C and the highest hardness of the investigated steel is 579 HV it is earning from the warm-up temperature 920 °C . These results meet to AISI – SAE 1045 or JIS G 4051 grade S 45 C standard.


Sign in / Sign up

Export Citation Format

Share Document