STUDY ON PREPARING Al2O3 PARTICLES REINFORCED ZL109 COMPOSITE BY IN SITU REACTION OF Fe2O3/Al SYSTEM

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1413-1418
Author(s):  
JING ZHANG ◽  
HUASHUN YU ◽  
QI ZHAO ◽  
HAITAO WANG ◽  
GUANGHUI MIN

Al 2 O 3 particles reinforced ZL109 composite was prepared by in situ reaction between Fe 2 O 3 and Al . The phases were identified by XRD and the microstructures were observed by SEM and TEM. The Al 2 O 3 particles in sub-micron size distribute uniformly in the matrix and Fe displaced from the in situ reaction forms net-like alloy phases with Cu , Ni , Al , Mn ect. The hardness and the tensile strength at room temperature of the composites have a small increase compared with the matrix. However, the tensile strength at 350°C can reach 92.18 MPa, which is 18.87 MPa higher than that of the matrix. The mechanism of the reaction in the Fe 2 O 3/ Al system was studied by DSC. The reaction between Fe 2 O 3 and Al involves two steps. The first step in which Fe 2 O 3 reacts with Al to form FeO and Al 2 O 3 takes place at the matrix alloy melting temperature. The second step in which FeO reacts with Al to form Fe and Al 2 O 3 takes place at a higher temperature.

2006 ◽  
Vol 326-328 ◽  
pp. 1857-1860
Author(s):  
Hong Mei Chen ◽  
Hua Shun Yu ◽  
Jing Zhang ◽  
Lin Zhang ◽  
Guang Hui Min

The Al2O3-TiC/Al composites were prepared by injecting CO2 gas into Ti contained Al-Si alloy melts. The microstructure of the composites was examined by XRD, SEM and TEM. It was indicated that both Al2O3 and TiC particles can be formed by the in situ reaction of CO2 with Ti and Al in the melten alloys. The Al2O3 and TiC particles in size of 0.3~1.5μm distributed uniformly in the matrix. The volume fraction of the particles is mainly depend upon the time of CO2 injection.The tensile strength at room temperature of the composites can reach 346.08MPa and the hardness is 149.6MPa HBS, repectively, which are higher than those of the matrix alloy.


2013 ◽  
Vol 842 ◽  
pp. 165-169 ◽  
Author(s):  
Dong Chen ◽  
Cong Zou ◽  
Yi Jie Zhang ◽  
Nai Heng Ma ◽  
Hao Wei Wang

7055 aluminum alloy reinforced with 15wt. % TiB2 particulates was synthesized by in situ method, the microstructure and tensile properties were investigated. There are a few particulate clusters in the matrix. The elastic modulus and hardness of the composite are higher than that of the matrix alloy, but the yield strength and ultimate tensile strength decrease. The decrease of strength is attributed to the presence of TiB2 particulate cluster and residual reaction slag.


Transient creep following stress reductions has been analysed by the method described by McLean (1980) to determine the friction stress σ 0 as a function of temperature and directional solidification conditions for the γ-γ'-Cr 3 Cr 2 in-situ composite and for the γ-γ' matrix alloy. These values of σ 0 are identical to the flow stresses at creep strain rates and can be identified with the sums of the barriers to dislocation motion through the matrix by climb around γ'-particles and Orowan bowing between the carbide fibres. The friction stress and the kinetics of deformation of the composite are determined by the matrix behaviour, whereas its creep strength depends on the distribution of stress between fibre and matrix. When the steady-state creep behaviour of γ-γ'-Cr 3 C 2 is analysed by using the usual power law description in terms of the effective stress σ — σ 0 , rather than the applied stress σ, the stress exponent is ca 4 and the activation energy is similar to the activation energy of self-diffusion for nickel. The results provide strong evidence for the operation of recovery-creep in both the composite and matrix alloys.


2015 ◽  
Vol 787 ◽  
pp. 583-587 ◽  
Author(s):  
V. Mohanavel ◽  
K. Rajan ◽  
K.R. Senthil Kumar

In the present study, an aluminum alloy AA6351 was reinforced with different percentages (1, 3 and 5 wt %) of TiB2 particles and they were successfully fabricated by in situ reaction of halide salts, potassium hexafluoro-titanate and potassium tetrafluoro-borate, with aluminium melt. Tensile strength, yield strength and hardness of the composite were investigated. In situ reaction between the inorganic salts K2TiF6 and KBF4 to molten aluminum leads to the formation of TiB2 particles. The prepared aluminum matrix composites were characterized using X-ray diffraction and scanning electron microscope. Scanning electron micrographs revealed a uniform dispersal of TiB2 particles in the aluminum matrix. The results obtained indicate that the hardness and tensile strength were increased with an increase in weight percentages of TiB2 contents.


2005 ◽  
Vol 475-479 ◽  
pp. 317-320 ◽  
Author(s):  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Zhong Xia Liu ◽  
Ai Qin Wang ◽  
Yong Gang Weng ◽  
...  

The in-situ Ti alloying of aluminium alloys was fulfilled by electrolysis, and the material was made into A356 alloy and used in automobile wheels. The results show that the grains of the A356 alloy was refined and the second dendrites arm was shortened due to the in-situ Ti alloying. Trough 3-hour solution treatment and 2-hour aging treatment for the A356 alloy, the microstructures were homogeneous, and Si particles were spheroid and distribute in the matrix fully. The outstanding mechanical properties with tensile strength (σb≥300Mpa) and elongation values (δ≥10%) have been obtained because the heat treatment was optimized. Compared with the traditional materials, tensile strength and elongation were increased by 7.6~14.1% and 7.4~44.3% respectively. The qualities of the automobile wheels were improved remarkably.


2013 ◽  
Vol 765 ◽  
pp. 418-422 ◽  
Author(s):  
Ram Naresh Rai ◽  
A.K. Prasada Rao ◽  
G.L. Dutta ◽  
M. Chakraborty

The forming behaviour of in-situ Al-TiC composites was investigated by comparing microstructure and mechanical properties of as-cast, forged and rolled specimens. The microstructures of forged and rolled specimens reveal uniform distribution of the TiC particles, which are responsible for the enhancement of the tensile strength of the composite. The formed samples were found to be crack free. This feature is very likely to be due to good interface bonding of uniformly dispersed sub-micron size TiC particles with the Al matrix.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3358 ◽  
Author(s):  
Hang Chen ◽  
Guangbao Mi ◽  
Peijie Li ◽  
Xu Huang ◽  
Chunxiao Cao

In this study, graphene-oxide (GO)-reinforced Ti–Al–Sn–Zr–Mo–Nb–Si high-temperature titanium-alloy-matrix composites were fabricated by powder metallurgy. The mixed powders with well-dispersed GO sheets were obtained by temperature-controlled solution mixing, in which GO sheets adsorb on the surface of titanium alloy particles. Vacuum deoxygenating was applied to remove the oxygen-containing groups in GO, in order to reduce the introduction of oxygen. The compact composites with refined equiaxed and lamellar α phase structures were prepared by hot isostatic pressing (HIP). The results show that in-situ TiC layers form on the surface of GO and GO promotes the precipitation of hexagonal (TiZr)6Si3 particles. The composites exhibit significant improvement in strength and microhardness. The room-temperature tensile strength, yield strength and microhardness of the composite added with 0.3 wt% GO are 9%, 15% and 27% higher than the matrix titanium alloy without GO, respectively, and the tensile strength and yield strength at 600 °C are 3% and 21% higher than the matrix alloy. The quantitative analysis indicates that the main strengthening mechanisms are load transfer strengthening, grain refinement and (TiZr)6Si3 second phase strengthening, which accounted for 48%, 30% and 16% of the improvement of room-temperature yield strength, respectively.


2020 ◽  
Vol 321 ◽  
pp. 11035
Author(s):  
E. Sukedai ◽  
E. Aeby-Gautier ◽  
M. Dehmas

A Ti-5553 specimen was continuously heated to 923 K and simultaneously in-situ HEXRD profiles were taken. In addition, specimens heated at the same rate to several temperatures up to 923 K and further quenched were observed by transmission electron microscopy. Based on both results obtained, transformation sequence was clarified, precipitations of ω-, α”iso- and α-phases were confirmed, and size and density of these precipitates were measured. Hardness values of those specimens were also measured. The hardening mechanism was considered as shearing-mechanism for specimens aged at lower temperatures and by-pass one for specimens aged at higher temperature. An attempt of distinction between α”iso - and α-precipitates was also tried. Both precipitates were in needle-like shape and a possibility was suggested by measuring angles between two needle-shape precipitates on {110} of the matrix and comparing with each other.


2007 ◽  
Vol 1054 ◽  
Author(s):  
Wantinee Viratyaporn ◽  
Nancy Twu ◽  
Richard Lehman

ABSTRACTA novel approach has been explored for the efficient dispersion and uniaxial alignment of fibers in dual phase polymer matrices based on the streaming flow that occurs when two immiscible polymer blends are melt processed under high shear conditions. Such conditions improve the alignment and distribution of fibers in the matrix, a feature of particular importance when fine nanofibers are used. This self-alignment mechanism seeks to produce optimum properties from relatively small volume fractions of fiber. Recent efforts have focused on a model system containing micron-size glass fibers in immiscible polymer blends. This paper presents selected mechanical properties measured for the model system and the flow/orientation paradigm that produces the observed morphologies.


2013 ◽  
Vol 550 ◽  
pp. 107-113
Author(s):  
Xiao Lu Gong ◽  
Fei Zhao ◽  
Di Zhang

The tribological performances of in-situ (TiB + TiC) / Ti1100 composites prepared by casting and the matrix alloy were tested by pin-on disc mode. The worn surface and wear debris were investigated by SEM. The models of the composites during the wear process were simulated by ABAQUS FEA software. The analysis shows the stress distributions inside the composites under the different shear stress. The wear mechanism of the composites is probed.


Sign in / Sign up

Export Citation Format

Share Document