THE EXCHANGE-BIASING IN THE TOP-CONFIGURATION Ni80Fe20/Ir20Mn80 SYSTEM

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1658-1662
Author(s):  
YUAN-TSUNG CHEN

In this work, top-configuration exchange-biasing NiFe ( y )/ IrMn (90Å) systems have been investigated with three different conditions: (a) the substrate temperature ( T s ) was kept at room temperature (RT) only, (b) T s at RT with an in-plane field ( h ) = 500 Oe deposition during deposition, and (c) T s = RT with h during deposition and postdeposition annealing in the field at T A = 250° C for 1h, with the samples field cooled to RT. High resolution electron cross-sectional transmission electron microscopy (HR X-TEM) and x-ray results reveal that the IrMn (111) texturing plays a key role in the exchange-biasing field ( H ex ) and interfacial energy ( J k ). The H ex versus y result shows that H ex increases when y decreases. Since J k = H ex M s y , where M s is NiFe magnetization, it is easy to derive H ex = J k /( M s y ). Therefore, if H ex is inversely proportional to y , with J k / M s constant, we find H ex y = constant. In short, the y dependence of J k is similar to that of M s for each curve. The H c is inversely proportional to y because of the surface pinning effects from the Ta / NiFe and NiFe / IrMn interfaces. Finally, the optimal values for H ex and J k are 220 Oe and 0.075 erg/cm2, respectively.

1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


Nukleonika ◽  
2015 ◽  
Vol 60 (1) ◽  
pp. 121-126
Author(s):  
Jakub Rzącki ◽  
Jan Świerczek ◽  
Mariusz Hasiak ◽  
Jacek Olszewski ◽  
Józef Zbroszczyk ◽  
...  

Abstract As revealed by Mössbauer spectroscopy, replacement of 10 at.% of iron in the amorphous Fe70Mo5Cr4Nb6B15 alloy by cobalt or nickel has no effect on the magnetic structure in the vicinity of room temperature, although the Curie point moves from 190 K towards ambient one. In the early stages of crystallization, the paramagnetic crystalline Cr12Fe36Mo10 phase appears before α-Fe or α-FeCo are formed, as is confirmed by X-ray diffractometry and transmission electron microscopy. Creation of the crystalline Cr12Fe36Mo10 phase is accompanied by the amorphous ferromagnetic phase formation at the expense of amorphous paramagnetic one.


1985 ◽  
Vol 54 ◽  
Author(s):  
A. Lahav ◽  
M. Eizenberg ◽  
Y. Komem

ABSTRACTThe reaction between Ni60Ta40 amorphous alloy and (001) GaAs was studied by cross-sectional transmission electron microscopy, Auger spectroscopy, and x-ray diffraction. At 400°C formation of Ni GaAs at the interface with GaAs was observed. After heat treatment at 600°C in vacuum a layered structure of TaAs/NiGa/GaAs has been formed. The NiGa layer has epitaxial relations to the GaAs substrate. The vertical phase separation can be explained by opposite diffusion directions of nickel and arsenic atoms.


2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


1985 ◽  
Vol 46 ◽  
Author(s):  
D. K. Sadana ◽  
J. M. Zavada ◽  
H. A. Jenkinson ◽  
T. Sands

AbstractHigh resolution transmission electron microscopy (HRTEM) has been performed on cross-sectional specimens from high dose (1016 cm−2) H+ implanted (100) GaAs (300 keV at room temperature). It was found that annealing at 500°C created small (20-50Å) loops on {111} near the projected range (Rp)(3.2 μm). At 550-600°C, voids surrounded by stacking faults, microtwins and perfect dislocations were observed near the Rp. A phenomenological model explaining the observed results is proposed.


2009 ◽  
Vol 1242 ◽  
Author(s):  
R. Esparza ◽  
A. Aguilar ◽  
A. Escobedo-Morales ◽  
C. Patiño-Carachure ◽  
U. Pal ◽  
...  

ABSTRACTZinc peroxide (ZnO2) nanocrystals were directly produced by hydrothermal process. The nanocrystals were synthesized using zinc acetate as precursor and hydrogen peroxide as oxidant agent. The ZnO2 powders were characterized by X-ray powder diffraction and transmission electron microscopy. The results of transmission electron microscopy indicated that the ZnO2powders consisted of nanocrystals with diameters below to 20 nm and a faceted morphology. High resolution electron microscopy observations have been used in order to the structural characterization. ZnO2 nanocrystals exhibit a well-crystallized structure.


1994 ◽  
Vol 358 ◽  
Author(s):  
Paul wickboldt ◽  
Hyeonsik M. Cheong ◽  
Dawen Pang ◽  
Joseph H. Chen ◽  
William paul

ABSTRACTSiOx nanoclusters (7 nm to 17 nm) are produced by evaporation of SiO (or Si) in Ar (+O2) atmospheres. Room temperature photoluminescence (PL) measurements in vacuum reveal a broad band centered at 1.65 eV. Upon exposure to gas this PL band is extinguished in a matter of seconds, and another band centered at 2.12 eV appears. This effect occurs regardless of the gas used (He, Ar, N2, O2, H2O vapor or air) and is entirely reversible upon evacuation.Transmission electron microscopy (TEM), Raman, infrared transmission, and X-ray photoluminescence spectroscopy (XPS) measurements are used to characterize the clusters. They are noncrystalline, and the oxidation state is a suboxide rather than SiO2 The PL spectra are independent of cluster size. The PL does not occur without sufficient oxidation and does not require the presence of bonded hydrogen. We are led to speculate that the radiative recombination occurs in electron states derived from a suboxide.


2018 ◽  
Vol 90 (5) ◽  
pp. 833-844
Author(s):  
Leonid Aslanov ◽  
Valery Zakharov ◽  
Ksenia Paseshnichenko ◽  
Aleksandr Yatsenko ◽  
Andrey Orekhov ◽  
...  

AbstractA new method for synthesis of 2D nanocrystals in water was proposed. The use of perfluorothiophenolate ions as surfactant allowed us to produce 2D single-crystal nanosheets of CaS at pH=9 and flat nanocrystals of PbS at pH=9 at room temperature. Mesocrystalline nanobelts of CdS and mesocrystals of PbS were obtained at pH=3–5 and pH=10–12, respectively. Morphology, structure and chemical composition of nanoparticles were characterized by high-resolution transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. A mechanism of nanoparticles formation was discussed.


2014 ◽  
Vol 21 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Daniela Nunes ◽  
Lídia Santos ◽  
Paulo Duarte ◽  
Ana Pimentel ◽  
Joana V. Pinto ◽  
...  

AbstractThe present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.


Sign in / Sign up

Export Citation Format

Share Document