Scattering of phonon by stacking faults and dislocation cores in plastically deformed LiF crystal: An analysis

2019 ◽  
Vol 33 (23) ◽  
pp. 1950259
Author(s):  
B. K. Singh ◽  
L. K. Sharma

The present work studies and analyses the effect of compression on LiF crystal. The compression is of the order that it deforms the LiF crystal plastically. The sequence of closed packed structure of plastically deformed crystal is disturbed and we expect stacking faults i.e., faults in the crystal along a plane. Plastically deformed crystal contains high density of dislocations. The depression of phonon conductivity in plastically deformed crystal is associated with interaction of the phonon with high density of dislocations. Phonon or the quantised lattice wave scatters with these stacking faults and dislocation cores, as a result, there is depression of lattice thermal conductivity near the peak. The number of stacking faults/cm N[Formula: see text] has been calculated which is of the order of 101/cm, and dislocation core size which is of the order of burger vector if dislocation density is of the order of 108/cm2. Separate contributions of relaxation rates for various phonon scattering processes have been calculated for both longitudinal and transverse phonons. Present work strongly supports that phonons are mainly scattered by stacking faults and dislocation cores in plastically deformed LiF crystal.

2020 ◽  
Vol 8 (32) ◽  
pp. 16405-16420 ◽  
Author(s):  
Warda Rahim ◽  
Jonathan M. Skelton ◽  
David O. Scanlon

Using ab initio methods, we predict α-Bi2Sn2O7 to have an ultra-low lattice thermal conductivity at room temperature due to the high density of phonon scattering events, which makes it a potential earth-abundant n-type low temperature thermoelectric.


2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


2012 ◽  
Vol 1404 ◽  
Author(s):  
A.A. Maznev

ABSTRACTThe onset of size effects in phonon-mediated thermal transport along a thin film at temperatures comparable or greater than the Debye temperature is analyzed theoretically. Assuming a quadratic frequency dependence of phonon relaxation rates in the low-frequency limit, a simple closed-form formula for the reduction of the in-plane thermal conductivity of thin films is derived. The effect scales as the square root of the film thickness, which leads to the prediction of measurable size-effects even at “macroscopic” distances ~100 μm. However, this prediction needs to be corrected to account for the deviation from the ω−2 dependence of phonon lifetimes at sub-THz frequencies due to the transition from Landau-Rumer to Akhiezer mechanism of phonon dissipation.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Salem Neily ◽  
Sami Dhouibi ◽  
Roland Bonnet

Inclined threading dislocations (TDs) piercing the oriented free surface of a crystal are currently observed after growth of oriented thin films on substrates. Up to date the unique way to treat their anisotropic elastic properties nearby the free surface region is to use the integral formalism, which assumes no dislocation core size and needs numerical double integrations. In a first stage of the work, a new and alternative approach to the integral formalism is developed using double Fourier series and the concept of a finite core size, which is often observed in high-resolution transmission electron microscopy. In a second stage, the integral formalism and the Fourier series approaches are applied to the important case of a TD piercing the basal free surface of a hexagonal crystal. For this particular geometry, easy-to-use expressions are derived and compared to a third approach previously known for a plate-like crystal. Finally, the numerical interest and the convergence of these approaches are tested using the basal free surface of the GaN compound, in particular for TDs with Burgers vectors c and (a + c).


2005 ◽  
Vol 876 ◽  
Author(s):  
Patrick Huber ◽  
Klaus Knorr

AbstractWe present a selection of x-ray diffraction patterns of spherical (He, Ar), dumbbell- (N2, CO), and chain-like molecules (n-C9H20, n-C19H40) solidified in nanopores of silica glass (mean pore diameter 7nm). These patterns allow us to demonstrate how key principles governing crystallization have to be adapted in order to accomplish solidification in restricted geometries. 4He, Ar, and the spherical close packed phases of CO and N2 adjust to the pore geometry by introducing a sizeable amount of stacking faults. For the pore solidified, medium-length chainlike n-C19H40 we observe a close packed structure without lamellar ordering, whereas for the short-chain C9H20 the layering principle survives, albeit in a modified fashion compared to the bulk phase.


2009 ◽  
Vol 1172 ◽  
Author(s):  
Gyaneshwar P. Srivastava

AbstractWe provide a brief discussion of the Boltzmann equation derived Callaway-Debye relaxation time theory of lattice thermal conductivity of micro- and nano-structured materials (of size greater than 20 nm. Incorporated in the theory is a comprehensive treatment of three-phonon scattering events. Using numerical results from this theory, we present a quantitative investigation of the magnitude and temperature variation of the conductivity of CVD polycrystalline diamond films, suspended GaAs nanostructures, Si nanowires, and AlN micro- and nano-ceramics.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3854 ◽  
Author(s):  
Jun-Young Cho ◽  
Muhammad Siyar ◽  
Woo Chan Jin ◽  
Euyheon Hwang ◽  
Seung-Hwan Bae ◽  
...  

SnSe is considered as a promising thermoelectric (TE) material since the discovery of the record figure of merit (ZT) of 2.6 at 926 K in single crystal SnSe. It is, however, difficult to use single crystal SnSe for practical applications due to the poor mechanical properties and the difficulty and cost of fabricating a single crystal. It is highly desirable to improve the properties of polycrystalline SnSe whose TE properties are still not near to that of single crystal SnSe. In this study, in order to control the TE properties of polycrystalline SnSe, polycrystalline SnSe–SnTe solid solutions were fabricated, and the effect of the solid solution on the electrical transport and TE properties was investigated. The SnSe1−xTex samples were fabricated using mechanical alloying and spark plasma sintering. X-ray diffraction (XRD) analyses revealed that the solubility limit of Te in SnSe1−xTex is somewhere between x = 0.3 and 0.5. With increasing Te content, the electrical conductivity was increased due to the increase of carrier concentration, while the lattice thermal conductivity was suppressed by the increased amount of phonon scattering. The change of carrier concentration and electrical conductivity is explained using the measured band gap energy and the calculated band structure. The change of thermal conductivity is explained using the change of lattice thermal conductivity from the increased amount of phonon scattering at the point defect sites. A ZT of ~0.78 was obtained at 823 K from SnSe0.7Te0.3, which is an ~11% improvement compared to that of SnSe.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jae-Yeol Hwang ◽  
Eun Sung Kim ◽  
Syed Waqar Hasan ◽  
Soon-Mok Choi ◽  
Kyu Hyoung Lee ◽  
...  

Highly dense pore structure was generated by simple sequential routes using NaCl and PVA as porogens in conventional PbTe thermoelectric materials, and the effect of pores on thermal transport properties was investigated. Compared with the pristine PbTe, the lattice thermal conductivity values of pore-generated PbTe polycrystalline bulks were significantly reduced due to the enhanced phonon scattering by mismatched phonon modes in the presence of pores (200 nm–2 μm) in the PbTe matrix. We obtained extremely low lattice thermal conductivity (~0.56 W m−1 K−1at 773 K) in pore-embedded PbTe bulk after sonication for the elimination of NaCl residue.


Sign in / Sign up

Export Citation Format

Share Document