Numerical simulation for heat and mass transport analysis for magnetic-nanofluids flow through stretchable convergent/divergent channels

Author(s):  
Hashim ◽  
Muhammad Hafeez ◽  
Yu Ming Chu

This paper adopts a theoretical approach to explore the heat and mass transport features for MHD Jeffery–Hamel flow of viscous nanofluids through convergent/divergent channels with stretching or shrinking walls. Recently, this type of flows generated by nonparallel inclined plates with converging or diverging properties has been frequently utilized in various industrial and engineering processes, like, blood flow through arteries, different cavity flows and flow through canals. The current flow model is formulated mathematically in terms of partial differential equations (PDEs) in accordance with conservation laws under an assumption that the flow is symmetric and purely radial. In addition, heat and mass transport mechanisms are being modeled in the presence of Brownian motion and thermophoretic aspects using Buongiorno’s nanofluid model. The dimensionless variables are employed to get the non-dimensional forms of the governing PDEs. The built-in MATLAB routine bvpc4 is implemented to determine the numerical solutions for governing the nonlinear system of ordinary differential equations (ODEs). Numerical results are presented in the form of velocity, temperature and concentration plots to visualize the influence of active flow parameters. The simulated results revealed that the Reynold number has an opposite effect on dimensionless velocity profiles in the case of convergent and divergent channels. Besides, the temperature distributions enhance for higher values of Brownian motion parameter.

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Sadia Siddiqa ◽  
Naheed Begum ◽  
M. A. Hossain ◽  
Rama Subba Reddy Gorla

This paper reports the numerical results for the natural convection flow of a two-phase dusty nanofluid along a vertical wavy frustum of a cone. The general governing equations are transformed into parabolic partial differential equations, which are then solved numerically with the help of implicit finite difference method. Comprehensive flow formations of carrier and dusty phases are given with the aim to predict the behavior of heat and mass transport across the heated wavy frustum of a cone. The effectiveness of utilizing the nanofluids to control skin friction and heat and mass transport is analyzed. The results clearly show that the shape of the waviness changes when nanofluid is considered. It is shown that the modified diffusivity ratio parameter, NA, extensively promotes rate of mass transfer near the vicinity of the cone, whereas heat transfer rate reduces.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zulqurnain Sabir ◽  
Assad Ayub ◽  
Juan L. G. Guirao ◽  
Saira Bhatti ◽  
Syed Zahir Hussain Shah

The present study is related to the effects of activation energy and thermophoretic diffusion on steady micropolar fluid along with Brownian motion. The activation energy and thermal conductivity of steady micropolar fluid are also discussed. The equation of motion, angular momentum, temperature, concentration, and their boundary conditions are presented for the micropolar fluid. The detail of geometry reveals the effects of several parameters on the parts of the system. The nonlinear partial differential equations are converted into nonlinear ordinary differential equations, and a famous shooting scheme is used to present the numerical solutions. The comparison of the obtained results by the shooting technique and the numerical bvp4c technique is presented. The behavior of local skin friction numbers and couple stress number is tabulated for different parameters, and some figures are plotted to present the different parameters. For uplifting the values of AE for parameter λA, the concentration profile is increased because of the Arrhenius function, and AE increases with the reduction of this function. The increasing values of the parameter of rotation G show the decrement in velocity because of the rotation of the particle of the fluid, so the linear motion decreases. Thermophoresis is responsible for shifting the molecules within the fluid, and due to this, an increment in boundary layer thickness is found, so by a greater value of Nt, the concentration profile decreases and temperature profile goes down.


2016 ◽  
Vol 58 (1) ◽  
pp. 96-118 ◽  
Author(s):  
AKBAR ZAMAN ◽  
NASIR ALI ◽  
O. ANWAR BEG ◽  
M. SAJID

A theoretical study of an unsteady two-layered blood flow through a stenosed artery is presented in this article. The geometry of a rigid stenosed artery is assumed to be$w$-shaped. The flow regime is assumed to be laminar, unsteady and uni-directional. The characteristics of blood are modelled by the generalized Oldroyd-B non-Newtonian fluid model in the core region and a Newtonian fluid model in the periphery region. The governing partial differential equations are derived for each region by using mass and momentum conservation equations. In order to facilitate numerical solutions, the derived differential equations are nondimensionalized. A well-tested explicit finite-difference method (FDM) which is forward in time and central in space is employed for the solution of a nonlinear initial boundary value problem corresponding to each region. Validation of the FDM computations is achieved with a variational finite element method algorithm. The influences of the emerging geometric and rheological parameters on axial velocity, resistance impedance and wall shear stress are displayed graphically. The instantaneous patterns of streamlines are also presented to illustrate the global behaviour of the blood flow. The simulations are relevant to haemodynamics of small blood vessels and capillary transport, wherein rheological effects are dominant.


Author(s):  
Masood Khan ◽  
Awais Ahmed ◽  
Ayesha Maqbool ◽  
Zahoor Iqbal ◽  
Muhammad Yousaf Malik ◽  
...  

In this article, the thermal and solutal analysis are carried out in the swirling flow of Maxwell fluid over a stretchable rotating cylinder in the perspective of Cattaneo–Christov double diffusion theory instead of classical Fourier’s and Fick’s law for heat and mass transport phenomena. The constant rotation of the cylinder and axial-dependent stretching produced the flow under the influence of the magnetic field. The heat sink/source and chemical reaction in flow work as a controlling agent for energy transportation. The problem of thermal and solutal transport in flow under certain suppositions is modeled in the form of partial differential equations. Furthermore, the partial differential equations are converted to ordinary differential equations using flow similarities. To calculate the numerical computation of similar ordinary differential equations is performed through the bvp4c MATLAB technique. The flow phenomenon and energy distribution in flow are examined by using graphs. The key findings of this study reveal that increase in relaxation time parameters for heat and mass transport, both temperature and concentration profiles decline. Moreover, the energy transport increases for the higher heat source and chemical reaction parameters.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 926 ◽  
Author(s):  
Khuram Rafique ◽  
Muhammad Imran Anwar ◽  
Masnita Misiran ◽  
Ilyas Khan ◽  
Asiful H. Seikh ◽  
...  

Brownian motion and thermophoresis diffusions are the fundamental ideas of abnormal upgrading in thermal conductivity via binary fluids (base fluid along with nanoparticles). The influence of Brownian motion and thermophoresis are focused on in the Buongiorno model. In this problem, we considered the Buongiorno model with Brownian motion and thermophoretic effects. The nonlinear ordinary differential equations are recovered from the partial differential equations of the boundary flow via compatible similarity transformations and then employed to the Keller-box scheme for numerical results. The physical quantities of our concern including skin friction, Nusselt number, and Sherwood number along with velocity, temperature and concentration profile against involved effects are demonstrated. The impacts of the involved flow parameters are drawn in graphs and tabulated forms. The inclination effect shows an inverse relation with the velocity field. Moreover, the velocity profile increases with the growth of the buoyancy effect.


Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55 ◽  
Author(s):  
Metib Alghamdi

This article explores magnetohydrodynamic stretched flow of viscoelastic nanofluids with heterogeneous–homogeneous reactions. Attention in modeling has been specially focused to constitutive relations of viscoelastic fluids. The heat and mass transport process is explored by thermophoresis and Brownian dispersion. Resulting nonlinear systems are computed for numerical solutions. Findings for temperature, concentration, concentration rate, skin-friction, local Nusselt and Sherwood numbers are analyzed for both second grade and elastico-viscous fluids.


2017 ◽  
Vol 11 ◽  
pp. 33-42 ◽  
Author(s):  
K. Ganesh Kumar ◽  
Bijjanal Jayanna Gireesha ◽  
B.C. Prasannakumara ◽  
G.K. Ramesh ◽  
Oluwole Daniel Makinde

A combined effect of thermal radiation and viscous dissipation over a melting moving surface is investigated. Casson liquid model is accounted as working liquid. The Brownian motion and thermophoresis in Buogiorno’s type nanofluid are retained. Numerical solutions are obtained for the reduced ordinary differential equations via RKF 45 method. The pertinent parameters on velocity, temperature and concentration are analyzed through plots and tables. Output demonstrated that higher values of melting, thermal radiation and viscous dissipation are enhanced the temperature. Validation of the present work is made with the existing literature.


In this article, the unsteady free convective flow through a rotating disk was discussed under the influence of the chemical reaction, Dufour effect and Soret effect. Similarity transformation is used to change the unsteady non-linear boundary equations to a set of ordinary differential equations. Then we used the MATLAB’s bvp4c solver to solve these differential equations. Temperature as well as concentration profiles are drawn for different flow parameters of flow such as Soret Effect, Dufour Effect and also parameter of Chemical Reaction. We have also discussed the Nusselt number graph and values are given in a tabular form for different kinds of flow parameters.


2002 ◽  
Vol 743 ◽  
Author(s):  
M. V. Bogdanov ◽  
S. Yu. Karpov ◽  
A. V. Kulik ◽  
M. S. Ramm ◽  
Yu. N. Makarov ◽  
...  

ABSTRACTBulk AlN crystal growth by Physical Vapor Transport (PVT) is studied both experimentally and numerically. This paper presents the analysis of heat and mass transport mechanisms in closed and partially open crucible geometries. The heat transfer in the growth system used at North Carolina State University (NCSU) is simulated. The computed temperature profiles are used in the analysis of mass transport in the growth cell to gain understanding of the effect of species exchange between the crucible and environment on the AlN growth rate. The model predictions are in reasonable agreement with observations.


Sign in / Sign up

Export Citation Format

Share Document