THERMOELECTRIC PROPERTIES OF Ti-DOPED SiC/TiCx COMPOSITE SYNTHESIZED BY TPPP METHOD

2000 ◽  
Vol 14 (04) ◽  
pp. 131-138 ◽  
Author(s):  
HONG CHEN ◽  
YUZHE YIN ◽  
YUANJIN HE

To improve thermoelectric properties, we attempt to dope Ti into SiC-based composite by transient plastic phase process (TPPP) method. The final result is composed of the functional phase SiC and the reinforcement phases TiC x and TiSi 2. The process of doping is the diffusion of Ti in TiC x solid–solution into SiC grain at high temperature. When the initial SiC is α-type of 5 μm size, the Seebeck coefficient S is less than 10 μV/K at room temperature. SEM photograph shows the reason being that doping is very weak. We change the initial SiC to the β-type of 90 nm size to aid doping. It is observed that S can be significantly improved to 46.3 μV/K at room temperature. When the temperature rises, the improvement is even greater. Measurements of the lattice parameter of β- SiC show that the parameter parallel to the Si–C layer is almost unchanged and the parameter perpendicular to the Si–C layer increases by about 0.48%, which demonstrated that Ti has been successfully doped into the SiC grain and exists as interstitial impurities.

2003 ◽  
Vol 793 ◽  
Author(s):  
Theodora Kyratsi ◽  
Duck Young Chung ◽  
Jeff S. Dyck ◽  
Ctirad Uher ◽  
Sangeeta Lal ◽  
...  

ABSTRACTSolid solution series of the type K2Bi8-xSbxSe13, K2-xRbxBi8Se13 as well as K2Bi8Se13-xSx were prepared and the distribution of the atoms (Bi/Sb, K/Rb and Se/S) on different crystallographic sites, the band gaps and their thermoelectric properties were studied. The distribution Se/S appears to be more uniform than the distribution of the Sb and Rb atoms in the β-K2Bi8Se13 structure that shows preference in specific sites in the lattice. Band gap is mainly affected by Sb and S substitution. Seebeck coefficient measurements showed n-type character for of all Se/S members. In the Bi/Sb series an enhancement of p-type character was observed. The thermoelectric performance as well as preliminary high temperature measurements suggest the potential of these materials for high temperature applications.


1999 ◽  
Vol 604 ◽  
Author(s):  
Noriyuki Takashima ◽  
Yasuo Azuma ◽  
Jun-Ichi Matsushita

AbstractSeveral silicon boride phases such as SiB4, SiB6, SiB6-x, SiB6+x, and Si11B31, were previously reported. Among them, SiB6has proved to be a potentially useful material because of its excellent electrical conductivity, high degree of hardness, moderate melting point, and low specific gravity. The sintering conditions and thermoelectric properties of silicon boride (SiB6) ceramics produced by hot pressing were investigated in order to determine the suitability of this material for high-temperature thermoelectric applications as a smart material. The relative density increased with increasing sintering temperature. With a sintering temperature of 1923 K, a sintered body having a relative density of more than 99% was obtained. X-ray diffraction analysis showed no crystalline phase other than SiB6 in the sintered body. The specimens were prepared for measurement of the electrical conductivity and Seebeck coefficient by the D.C. four-terminal method. The thermal conductivity of SiB6 was obtained by calculation from the thermal diffusivity and specific heat capacity of the specimen. The electrical conductivity of SiB6 increased with increasing temperature. The electrical conductivity of the polycrystalline SiB6 (99% dense) was 0.5 to 1.1 × 103 S/m at 298 to 1273 K. The thermal conductivity decreased with increasing temperature in the range of room temperature to 1273 K. The thermal conductivity was 9.1 to 2.5 W/mK in the range of room temperature to 1273 K. The Seebeck coefficient of SiB6 increased with increasing temperature. The Seebeck coefficient of SiB6 was 140 × 10−6 V/K at 1273 K. The figure of merit Z of SiB6 increased with increasing temperature. The Z of SiB6 reached 8.1 × 10−6/K at 1273 K. The ZT value is useful to evaluate the ability of thermoelectric materials. The ZT value reached 0.01 at 1273 K. Based on the results, SiB6 showed very good thermoelectric material characteristics at high temperature.


2015 ◽  
Vol 1774 ◽  
pp. 13-18
Author(s):  
Bahadir Kucukgok ◽  
Babar Hussain ◽  
Chuanle Zhou ◽  
Ian T. Ferguson ◽  
Na Lu

ABSTRACTGaN and its alloys are promising candidates for high temperature thermoelectric (TE) materials due to their high Seebeck coefficient and high thermal and mechanical stability. Moreover, these materials can overcome the toxicity concern of current Te-based TE materials, such as Bi2Te3 and PbTe. These materials have recently shown a higher Seebeck coefficient than that of SiGe in high temperature region because their large bandgap characteristic eliminates the bipolar conduction. In this study, we report the room temperature thermoelectric properties of p-type Mg doped GaN, grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrate with various carrier concentrations. Undoped and n-type GaN are also incorporated with p-type GaN films to make comparison. The structural, optical, electrical, and thermal properties of the samples were examined by X-ray diffraction, photoluminescence, van der Pauw hall-effect, and thermal gradient methods, respectively. The Seebeck coefficient ranging from 710-900µV/K at room temperature of Mg: GaN were observed, which further indicated their potential TE applications.


2004 ◽  
Vol 19 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Werner Fischer ◽  
Lorenz Singheiser ◽  
Debabrata Basu ◽  
Amit Dasgupta

The crystal structure of several compounds of Ca1−xSrxZr4(PO4)6 ceramics has been investigated by X-ray powder diffraction at room temperature. All compounds form a solid solution with a unique unit cell. While the lattice parameter a of the hexagonal unit cell decreases of about 0.9% with increasing Sr content only slightly, it considerably elongates in c direction (2.8%). No structural transformation has been observed by high-temperature X-ray diffraction up to 1000 °C.


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


1998 ◽  
Vol 545 ◽  
Author(s):  
Ke-Feng Cai ◽  
Ce-Wen Nan ◽  
Xin-Min Min

AbstractB4C ceramics doped with various content of Si (0 to 2.03 at%) are prepared via hot pressing. The composition and microstructure of the ceramics are characterized by means of XRD and EPMA. Their electrical conductivity and Seebeck coefficient of the samples are measured from room temperature up to 1500K. The electrical conductivity increases with temperature, and more rapidly after 1300K; the Seebeck coefficient of the ceramics also increases with temperature and rises to a value of about 320μVK−1. The value of the figure of merit of Si-doped B4C rises to about 4 × 10−4K−1 at 1500K.


2003 ◽  
Vol 793 ◽  
Author(s):  
Y. Amagai ◽  
A. Yamamoto ◽  
C. H. Lee ◽  
H. Takazawa ◽  
T. Noguchi ◽  
...  

ABSTRACTWe report transport properties of polycrystalline TMGa3(TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017- 1018cm−3. Seebeck coefficient measurements reveal that FeGa3isn-type material, while the Seebeck coefficient of RuGa3changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1at room temperature and decreased to 2.5Wm−1K−1for FeGa3and 2.0Wm−1K−1for RuGa3at high temperature. The resulting thermoelectric figure of merit,ZT, at 945K for RuGa3reaches 0.18.


2014 ◽  
Vol 44 (6) ◽  
pp. 1803-1808 ◽  
Author(s):  
Deepanshu Srivastava ◽  
F. Azough ◽  
M. Molinari ◽  
S. C. Parker ◽  
R. Freer

2020 ◽  
Vol 6 (3) ◽  
pp. 113-123
Author(s):  
Arnold S. Borukhovich

The results of the creation of a high-temperature spin injector based on EuO: Fe composite material are discussed. Their magnetic, electrical, structural and resonance parameters are given in a wide range of temperatures and an external magnetic field. A model calculation of the electronic spectrum of the solid solution Eu–Fe–O, responsible for the manifestation of the outstanding properties of the composite, is performed. The possibility of creating semiconductor spin electronics devices capable of operating at room temperature is shown.


2015 ◽  
Vol 17 (7) ◽  
pp. 5386-5392 ◽  
Author(s):  
Alberto Torres ◽  
Renato B. Pontes ◽  
Antônio J. R. da Silva ◽  
Adalberto Fazzio

We theoretically investigate, as a function of the stretching, the behaviour of the Seebeck coefficient, the electronic heat conductance and the figure of merit of a molecule-based junction composed of a benzene-1,4-dithiolate (BDT) molecule coupled to Au(111) surfaces at room temperature.


Sign in / Sign up

Export Citation Format

Share Document