TOWARDS THE SELF-CALIBRATION OF A MULTIVIEW RADIOGRAPHIC IMAGING SYSTEM FOR THE 3D RECONSTRUCTION OF THE HUMAN SPINE AND RIB CAGE

Author(s):  
F. CHERIET ◽  
J. DANSEREAU ◽  
Y. PETIT ◽  
C.-É. AUBIN ◽  
H. LABELLE ◽  
...  

The main objective of this study was to develop a 3D reconstruction technique of the spine and rib cage of idiopathic scoliotic patients using the self-calibration of the imaging system. The proposed approach computes the intrinsic and extrinsic parameters of the radiographic setup with respect to the global coordinate system used at Ste-Justine Hospital. Our approach determines an optimal estimate of the geometrical parameters of the imaging system from a nonlinear minimization of the mean square distance between the observed and analytical projections of a set of matched points identified on a pair of radiographic views. The accuracy of the optimal estimate for the intrinsic parameters was significantly improved when geometric knowledge such as the known length of detectable straight bars is incorporated as a set of equality constraints in the optimization process. Furthermore, in order to retrieve the 3D structure of interest in the global coordinate system, a reference plane including the origin of the global coordinate system is specified. Computer simulations were performed to evaluate the self-calibration procedure and to determine the minimum knowledge required to obtain an accurate 3D reconstruction for clinical applications. An in vitro validation on real images of a dry cadaveric human spine showed that the method is feasible and reaches the expected accuracy.

Author(s):  
Niklas Holzwarth ◽  
Melanie Schellenberg ◽  
Janek Gröhl ◽  
Kris Dreher ◽  
Jan-Hinrich Nölke ◽  
...  

Abstract Purpose Photoacoustic tomography (PAT) is a novel imaging technique that can spatially resolve both morphological and functional tissue properties, such as vessel topology and tissue oxygenation. While this capacity makes PAT a promising modality for the diagnosis, treatment, and follow-up of various diseases, a current drawback is the limited field of view provided by the conventionally applied 2D probes. Methods In this paper, we present a novel approach to 3D reconstruction of PAT data (Tattoo tomography) that does not require an external tracking system and can smoothly be integrated into clinical workflows. It is based on an optical pattern placed on the region of interest prior to image acquisition. This pattern is designed in a way that a single tomographic image of it enables the recovery of the probe pose relative to the coordinate system of the pattern, which serves as a global coordinate system for image compounding. Results To investigate the feasibility of Tattoo tomography, we assessed the quality of 3D image reconstruction with experimental phantom data and in vivo forearm data. The results obtained with our prototype indicate that the Tattoo method enables the accurate and precise 3D reconstruction of PAT data and may be better suited for this task than the baseline method using optical tracking. Conclusions In contrast to previous approaches to 3D ultrasound (US) or PAT reconstruction, the Tattoo approach neither requires complex external hardware nor training data acquired for a specific application. It could thus become a valuable tool for clinical freehand PAT.


2011 ◽  
pp. 70-129
Author(s):  
B. J. Lei ◽  
E. A. Hendriks ◽  
Aggelos K. Katsaggelos

This chapter presents an extensive overview of passive camera calibration techniques. Starting with a detailed introduction and mathematical description of the imaging process of an off-the-shelf camera, it reviews all existing passive calibration approaches with increasing complexity. All algorithms are presented in detail so that they are directly applicable. For completeness, a brief counting about the self-calibration is also provided. In addition, two typical applications are given of passive camera calibration methods for specific problems of face model reconstruction and telepresence and experimentally evaluated. It is expected that this chapter can serve as a standard reference. Researchers in various fields in which passive camera calibration is actively or potentially of interest can use this chapter to identify the appropriate techniques suitable for their applications.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8359
Author(s):  
Jianping Zhao ◽  
Yong Cheng ◽  
Gen Cai ◽  
Shengbo He ◽  
Libing Liao ◽  
...  

This paper proposes a calibration method for a self-rotating, linear-structured-light (LSL) scanning, three-dimensional reconstruction system based on plane constraints. The point cloud of plane target collected by the self-rotating, LSL scanning, 3D reconstruction system should be constrained to the basic principle of the plane equation; it can quickly and accurately calibrate the position parameters between the coordinate system of the LSL module and the coordinate system of the self-rotating, LSL scanning, 3D reconstruction system. Additionally, the transformation equation could be established with the calibrated optimal position parameters. This paper obtains the above-mentioned position parameters through experiments and uses the calibrated self-rotating, LSL scanning, 3D reconstruction system to perform three-dimensional scanning and reconstruction of the test piece. The experimental results show that the calibration method can effectively improve the measurement accuracy of the system.


2013 ◽  
Vol 50 (10) ◽  
pp. 840-844
Author(s):  
Yukiya INOUE ◽  
Mayumi KIHARA ◽  
Junko YOSHIMURA ◽  
Naoki YOSHIDA ◽  
Kenji MATSUMOTO ◽  
...  

2020 ◽  
Vol 962 (8) ◽  
pp. 24-37
Author(s):  
V.E. Tereshchenko

The article suggests a technique for relation global kinematic reference system and local static realization of global reference system by regional continuously operated reference stations (CORS) network. On the example of regional CORS network located in the Novosibirsk Region (CORS NSO) the relation parameters of the global reference system WGS-84 and its local static realization by CORS NSO network at the epoch of fixing stations coordinates in catalog are calculated. With the realization of this technique, the main parameters to be determined are the speed of displacement one system center relativly to another and the speeds of rotation the coordinate axes of one system relatively to another, since the time evolution of most stations in the Russian Federation is not currently provided. The article shows the scale factor for relation determination of coordinate systems is not always necessary to consider. The technique described in the article also allows detecting the errors in determining the coordinates of CORS network in global coordinate system and compensate for them. A systematic error of determining and fixing the CORS NSO coordinates in global coordinate system was detected. It is noted that the main part of the error falls on the altitude component and reaches 12 cm. The proposed technique creates conditions for practical use of the advanced method Precise Point Positioning (PPP) in some regions of the Russian Federation. Also the technique will ensure consistent PPP method results with the results of the most commonly used in the Russian Federation other post-processing methods of high-precision positioning.


2021 ◽  
pp. 136943322098663
Author(s):  
Yi-Qun Tang ◽  
Wen-Feng Chen ◽  
Yao-Peng Liu ◽  
Siu-Lai Chan

Conventional co-rotational formulations for geometrically nonlinear analysis are based on the assumption that the finite element is only subjected to nodal loads and as a result, they are not accurate for the elements under distributed member loads. The magnitude and direction of member loads are treated as constant in the global coordinate system, but they are essentially varying in the local coordinate system for the element undergoing a large rigid body rotation, leading to the change of nodal moments at element ends. Thus, there is a need to improve the co-rotational formulations to allow for the effect. This paper proposes a new consistent co-rotational formulation for both Euler-Bernoulli and Timoshenko two-dimensional beam-column elements subjected to distributed member loads. It is found that the equivalent nodal moments are affected by the element geometric change and consequently contribute to a part of geometric stiffness matrix. From this study, the results of both eigenvalue buckling and second-order direct analyses will be significantly improved. Several examples are used to verify the proposed formulation with comparison of the traditional method, which demonstrate the accuracy and reliability of the proposed method in buckling analysis of frame structures under distributed member loads using a single element per member.


2021 ◽  
Vol 13 (11) ◽  
pp. 2185
Author(s):  
Yu Tao ◽  
Sylvain Douté ◽  
Jan-Peter Muller ◽  
Susan J. Conway ◽  
Nicolas Thomas ◽  
...  

We introduce a novel ultra-high-resolution Digital Terrain Model (DTM) processing system using a combination of photogrammetric 3D reconstruction, image co-registration, image super-resolution restoration, shape-from-shading DTM refinement, and 3D co-alignment methods. Technical details of the method are described, and results are demonstrated using a 4 m/pixel Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) panchromatic image and an overlapping 6 m/pixel Mars Reconnaissance Orbiter Context Camera (CTX) stereo pair to produce a 1 m/pixel CaSSIS Super-Resolution Restoration (SRR) DTM for different areas over Oxia Planum on Mars—the future ESA ExoMars 2022 Rosalind Franklin rover’s landing site. Quantitative assessments are made using profile measurements and the counting of resolvable craters, in comparison with the publicly available 1 m/pixel High-Resolution Imaging Experiment (HiRISE) DTM. These assessments demonstrate that the final resultant 1 m/pixel CaSSIS DTM from the proposed processing system has achieved comparable and sometimes more detailed 3D reconstruction compared to the overlapping HiRISE DTM.


Sign in / Sign up

Export Citation Format

Share Document