Order-Frequency Characteristics of a Promising Circuit Element: Fractor

2016 ◽  
Vol 25 (12) ◽  
pp. 1650156 ◽  
Author(s):  
Yi-Fei Pu ◽  
Ni Zhang ◽  
Huai Wang ◽  
Shu-Shu Chen ◽  
Xiao Yuan ◽  
...  

This paper mainly discusses the order-frequency characteristics of a promising circuit element: fractor. The concept of fractance, as the fractional-order impedance of a fractor, arose following the successful synthesis of a fractional differentiator or integrator in an analog circuit. In this paper, we studied some electrical properties of a fractor. In particular, the order-frequency characteristics of a fractor are introduced. First, the order-sensitivity characteristics of a fractor are proposed. Second, the order-frequency characteristics of a fractor are studied. Third, the time constant of a fractor is analyzed. Last, through mathematical analysis and simulation results, we discussed in detail some issues of the electrical properties of a fractor, especially its time constant.

2014 ◽  
Vol 701-702 ◽  
pp. 1143-1147
Author(s):  
Qi Li Wang

A fractional-order hyperchaotic system was proposed and some basic dynamical properties were investigated to show chaotic behavior. These properties include instability of equilibria, sensitivity to initial conditions, strange attractor, Lyapunov exponents, and bifurcation. The fractional-order system presents hyperchaos, chaos, and periodic behavior when the parameters vary continuously. Then, an analog circuit is designed onMultisim 11and the Multisim results are agreed with the simulation results.


Author(s):  
Riccardo Caponetto ◽  
Salvatore Graziani ◽  
Emanuele Murgano

AbstractIn the paper, a fractional-order RLC circuit is presented. The circuit is realized by using a fractional-order capacitor. This is realized by using carbon black dispersed in a polymeric matrix. Simulation results are compared with the experimental data, confirming the suitability of applying this new device in the circuital implementation of fractional-order systems.


2021 ◽  
Vol 48 (4) ◽  
pp. 53-61
Author(s):  
Andrea Marin ◽  
Carey Williamson

Craps is a simple dice game that is popular in casinos around the world. While the rules for Craps, and its mathematical analysis, are reasonably straightforward, this paper instead focuses on the best ways to cheat at Craps, by using loaded (biased) dice. We use both analytical modeling and simulation modeling to study this intriguing dice game. Our modeling results show that biasing a die away from the value 1 or towards the value 5 lead to the best (and least detectable) cheating strategies, and that modest bias on two loaded dice can increase the winning probability above 50%. Our Monte Carlo simulation results provide validation for our analytical model, and also facilitate the quantitative evaluation of other scenarios, such as heterogeneous or correlated dice.


2011 ◽  
Vol 378-379 ◽  
pp. 663-667 ◽  
Author(s):  
Toempong Phetchakul ◽  
Wittaya Luanatikomkul ◽  
Chana Leepattarapongpan ◽  
E. Chaowicharat ◽  
Putapon Pengpad ◽  
...  

This paper presents the simulation model of Dual Magnetodiode and Dual Schottky Magnetodiode using Sentaurus TCAD to simulate the virtual structure of magneto device and apply Hall Effect to measure magnetic field response of the device. Firstly, we use the program to simulate the magnetodiode with p-type semiconductor and aluminum anode and measure electrical properties and magnetic field sensitivity. Simulation results show that sensitivity of Dual Schottky magnetodiode is higher than that of Dual magnetodiode.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.


Author(s):  
Rahma Hammami ◽  
Imène Ben Ameur ◽  
Khaled Jelassi

This article deals with field-oriented control of induction machine squirrel cage. A robust fractional-order controller is applied and investigated to control the induction machine currents isd and isq. The fractional-order gives better fit in regulation operation. For this purpose, this controller form is recommended, especially in industrial systems, thanks to his flexibility, robustness and efficiency to solve complex problems such as electrical parameters changes (i.e. uncertain parameter) caused by the temperature effect. Based on frequency specification and several constraints, the fractional-order controller is designed. The fmincon toolbox optimization is used to adjust ki, kp and α values. In order to show the reliability of the developed controller in the induction machine behavior, several simulation results are carried out and illustrated.


Author(s):  
Murat Koseoglu ◽  
Furkan Nur Deniz ◽  
Baris Baykant Alagoz ◽  
Ali Yuce ◽  
Nusret Tan

Abstract Analog circuit realization of fractional order (FO) elements is a significant step for the industrialization of FO control systems because of enabling a low-cost, electric circuit realization by means of standard industrial electronics components. This study demonstrates an effective operational amplifier-based analog circuit realization of approximate FO integral elements for industrial electronics. To this end, approximate transfer function models of FO integral elements, which are calculated by using Matsuda’s approximation method, are decomposed into the sum of low-pass filter forms according to the partial fraction expansion. Each partial fraction term is implemented by using low-pass filters and amplifier circuits, and these circuits are combined with a summing amplifier to compose the approximate FO integral circuits. Widely used low-cost industrial electronics components, which are LF347N opamps, resistor and capacitor components, are used to achieve a discrete, easy-to-build analog realization of the approximate FO integral elements. The performance of designed circuit is compared with performance of Krishna’s FO circuit design and performance improvements are shown. The study presents design, performance validation and experimental verification of this straightforward approximate FO integral realization method.


2021 ◽  
Author(s):  
Adedayo Oke Adelakun

Abstract OPCL Coupling of Integer-order and fractional-order Sprott-A systems using off-shelf components are constructed. Fractance configurations such as chain-type and tree-type were designed using a fractional-order capacitor and fractional-order resistor, respectively. The simulation results of the coupled circuits reveal the transition between complete synchronization (CS) to Anti-synchronization (AS) and vice versa via Amplitude death (AD).


2021 ◽  
Author(s):  
N.V. Kovalenko ◽  
K.V. Sovin ◽  
O.A. Ryabushkin

Problem formulating. The vital processes of biological tissues are closely related to their electrical properties. An important task is to create a physical and mathematical model that will link the electrical properties of tissues to their physiological state. Goal. Construction of a model of biological tissue electrical properties based on the equations of ion electrodiffusion. Result. The paper presents the model of biological tissue electrical properties based on the ion electrodiffusion equations, and compares the simulation results with the experimental results presented in the literature. Practical meaning. The presented model can be used to describe processes occurring in tissue at the level of concentration and conductivity of ions in individual cells and cell membranes. In particular, the process of tissue degradation during laser radiation heating can be described.


2019 ◽  
Vol 30 (07) ◽  
pp. 1940013
Author(s):  
Darui Zhu ◽  
Rui Wang ◽  
Chongxin Liu ◽  
Jiandong Duan

This paper presents an adaptive projective pinning control method for fractional-order complex network. First, based on theories of complex network and fractional calculus, some preliminaries of mathematics are given. Then, an analysis is conducted on the adaptive projective pinning control theory for fractional-order complex network. Based on the projective synchronization control method and the combined adaptive pinning feedback control method, suitable projection synchronization scale factor, adaptive feedback controller and the node selection algorithm are designed to illustrate the synchronization for fractional-order hyperchaotic complex network. Simulation results show that all nodes are stabilized to equilibrium point. Theoretical analysis and simulation results demonstrate that the designed adaptive projective pinning controllers are efficient.


Sign in / Sign up

Export Citation Format

Share Document