Low-Voltage Diode-Less Rectifier Based on Fully Differential Difference Transconductance Amplifier

2017 ◽  
Vol 26 (11) ◽  
pp. 1750172 ◽  
Author(s):  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Montree Kumngern ◽  
Vilém Kledrowetz

This paper presents a voltage-mode low-voltage low-power diode-less rectifier with only one active element, the fully differential difference transconductance amplifier (FDDTA). The multiple-input floating-gate MOS (FG-MOS) transistor is used to build the differential pairs of the FDDTA resulting in the reduced count of transistors, circuit simplicity and the capability to work under low-voltage supply with extended input voltage range. The rectifier was designed with 0.9[Formula: see text]V voltage supply and 8[Formula: see text][Formula: see text]W power consumption, hence it is suitable for wearable electronics and biomedical applications. The simulation results obtained from the Cadence platform using 0.18[Formula: see text][Formula: see text]m TSMC CMOS technology show good performances for the designed circuit.

2014 ◽  
Vol 24 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Fabian Khateb ◽  
Montree Kumngern ◽  
Spyridon Vlassis ◽  
Costas Psychalinos ◽  
Tomasz Kulej

This paper presents a new CMOS structure for a fully balanced differential difference amplifier (FB-DDA) designed to operate from a sub-volt supply. This structure employs the bulk-driven quasi-floating-gate (BD-QFG) technique to achieve the capability of an ultra-low voltage operation and an extended input voltage range. The proposed BD-QFG FB-DDA is suitable for ultra-low-voltage low-power applications. The circuit is designed with a single supply of 0.5 V and consumes only 357 nW of power. The proposed circuit was simulated in a 0.18-μm TSMC CMOS technology and the simulation results prove its functionality and attractive parameters. An application example of a state variable filter is also presented to confirm the usefulness of the proposed BD-QFG FB-DDA.


2017 ◽  
Vol 26 (08) ◽  
pp. 1740003 ◽  
Author(s):  
Daniel Arbet ◽  
Viera Stopjaková ◽  
Martin Kováč ◽  
Lukáš Nagy ◽  
Matej Rakús ◽  
...  

In this paper, a variable gain amplifier (VGA) designed in 130 nm CMOS technology is presented. The proposed amplifier is based on the bulk-driven (BD) design approach, which brings a possibility to operate with low supply voltage. Since the supply voltage of only 0.6 V is used for the amplifier to operate, there is no risk of latch-up event that usually represents the main drawback of the BD circuit systems. BD transistors are employed in the input differential stage, which makes it possible to operate in rail-to-rail input voltage range. Achieved simulation results indicate that gain of the proposed VGA can be varied in a wide scale, which together with the low supply voltage feature make the proposed amplifier useful for low-voltage and low-power applications. An additional circuit responsible for maintaining the linear-in-decibel gain dependency of the VGA is also addressed. The proposed circuit block avails arbitrary shaping of the curve characterizing the gain versus the controlling voltage dependency.


2021 ◽  
Author(s):  
Darshil Patel

Low noise, high PSRR and fast transient low-dropout (LDO) regulators are critical for analog blocks such as ADCs, PLLs and RF SOC, etc. This paper presents design of low power, fast transient, high PSRR and high load-regulation low-dropout (LDO) regulator. The proposed LDO regulator is designed in 180nm. CMOS process and simulated in LTSpice and Cadence platform. The LDO proposed can support input voltage range up to 5V for loading currents up to 230mA. Measurements showed transient time or set-up time of less than 22µs, PSRR of ~66dB at 100kHz and >40dB at 1MHz and 0.8535mV of output voltage variation for a 0-230mA of load variation.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250024 ◽  
Author(s):  
CHAIWAT SAKUL ◽  
KOBCHAI DEJHAN

This paper describes squaring and square-rooting circuits operable on low voltage supplies, with their application proposed hereby as vector-summation and four-quadrant multiplier circuits. These circuits make use of a flipped voltage follower (FVF) as fundamental circuit. A detail classification of basic topologies derived from the FVF is given. The proposed circuits have simple structure, wide input range and low power consumption as well as small number of devices. All circuits are also examined and supported by a set of simulations with PSpice program. The circuits can operate at power supply of ±0.7 volts, the input voltage range of the squaring circuit is ±0.8 volts with 1.59% relative error and 1.78 μW power dispersion, the input current of the square-rooting circuit is about 50 μA with 0.55% relative error and 1.4 μW power dispersion and the vector-summation circuit have linearity error of 0.23% and 2.92 μW power dispersion. As in four-quadrant multiplier circuit, the total harmonic distortion of the multiplier is less than 1.2% for 0.8 VP-P input signal at 1 MHz fundamental frequency. Experimental result is carried out to confirm the operation by using commercial CMOS transistor arrays (CD4007). These circuits are highly expected to be effective in further application of the low voltage analog signal processing.


Author(s):  
Abderrezak Marzaki ◽  
V. Bidal ◽  
R. Laffont ◽  
W. Rahajandraibe ◽  
J-M. Portal ◽  
...  

This paper presents different low voltage adjustable CMOS Schmitt trigger using DCG-FGT transistor. Simple circuits are introduced to provide flexibility to program the hysteresic threshold in this paper. The hysteresis can be controlled accurately at a large voltage range. The proposed Schmitt trigger have been designed using 90nm 1.2V CMOS technology and simulated using Eldo with PSP device models. The simulation results show rail-to-rail operation and adjustable switching voltages <em>V<sub>TH- </sub></em>(low switching voltage) and <em>V<sub>TH+ </sub></em>(high switching voltage).


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 863 ◽  
Author(s):  
Jaeil Baek ◽  
Han-Shin Youn

This paper presents a full-bridge active-clamp forward-flyback (FBACFF) converter with an integrated transformer sharing a single primary winding. Compared to the conventional active-clamp-forward (ACF) converter, the proposed converter has low voltage stress on the primary switches due to its full-bridge active-clamp structure, which can leverage high performance Silicon- metal–oxide–semiconductor field-effect transistor (Si-MOSFET) of low voltage rating and low channel resistance. Integrating forward and flyback operations allows the proposed converter to have much lower primary root mean square (RMS) current than the conventional phase-shifted-full-bridge (PSFB) converter, while covering wide input/output voltage range with duty ratio over 0.5. The proposed integrated transformer reduces the transformer conduction loss and simplify the secondary structure of the proposed converter. As a result, the proposed converter has several advantages: (1) high heavy load efficiency, (2) wide input voltage range operation, (3) high power density with the integrated transformer, and (4) low cost. The proposed converter is a very promising candidate for applications with wide input voltage range and high power, such as the low-voltage DC (LDC) converter for eco-friendly vehicles.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750040
Author(s):  
Arun Kumar Sinha

This paper presents design and measurement results of a DC–DC converter, intended to harvest energy from a thermo-electric generator (TEG). The prototype chip was fabricated in 130[Formula: see text]nm CMOS technology. The designed converter can extract maximum power from a TEG, without using an input capacitor ([Formula: see text] or a closed loop maximum peak power tracking circuit to regulate the input voltage ([Formula: see text]. The converter uses a low voltage oscillator coupled with charge pump to directly power the auxiliary circuits; and auxiliary circuits drives two inductors in two half cycles of a clock pulse. The measurement has been performed by using a TEG, and a voltage source (50–200[Formula: see text]mV) with a series resistance of 5[Formula: see text]ohms. The result shows that the prototype can self-starts from 70[Formula: see text]mV with 5[Formula: see text]ms startup time and can work up to a minimum of 50[Formula: see text]mV; and can extract, 57.2% (at 50[Formula: see text]mV) to 65% (at 200[Formula: see text]mV), of the available power.


2017 ◽  
Vol 12 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Fabian Khateb ◽  
Montree Kumngern ◽  
Tomasz Kulej ◽  
Vilém Kledrowetz

2021 ◽  
Author(s):  
Darshil Patel

Low noise, high PSRR and fast transient low-dropout (LDO) regulators are critical for analog blocks such as ADCs, PLLs and RF SOC, etc. This paper presents design of low power, fast transient, high PSRR and high load-regulation low-dropout (LDO) regulator. The proposed LDO regulator is designed in 180nm. CMOS process and simulated in LTSpice and Cadence platform. The LDO proposed can support input voltage range up to 5V for loading currents up to 230mA. Measurements showed transient time or set-up time of less than 22µs, PSRR of ~66dB at 100kHz and >40dB at 1MHz and 0.8535mV of output voltage variation for a 0-230mA of load variation.


Author(s):  
Wan Mohammad Ehsan Aiman Bin Wan Jusoh ◽  
Siti Hawa Ruslan ◽  
Nabihah Ahmad ◽  
Warsuzarina Mat Jubadi ◽  
Rahmat Sanudin

<span>In this paper, the comparative study of symmetrical Operational Transconductance Amplifier (OTA) performance between 180 nm, 130 nm and 90 nm CMOS technology have been done thoroughly to find the relationship between voltage supply and bias current with performance parameters (gain, power consumption and Common-Mode Rejection Ratio (CMRR)). The OTA which adopts symmetrical topology is designed carefully and simulated using Synopsys HSpice software and the results are carefully analyzed and compared. The symmetrical OTA designed in 90 nm CMOS technology is found to be the best because the power consumed is only 9.83 µW from ±0.9 V voltage supply and the OTA achieved 55.9 dB of the DC gain. The CMRR of the symmetrical 90 nm OTA is 140 dB which is sufficient to reject the common-mode signals in electrocardiogram (ECG) input signal. The symmetrical 90 nm OTA is suitable to be implemented as bioamplifier in ECG signal detection system as it consumed low power and has a high CMRR characteristic.</span>


Sign in / Sign up

Export Citation Format

Share Document