An Improved ANFIS with Aid of ALO Technique for THD Minimization of Multilevel Inverters

2018 ◽  
Vol 27 (12) ◽  
pp. 1850193 ◽  
Author(s):  
Roy Francis ◽  
D. Meganathan

In this study, an artificial intelligent (AI) technique is proposed for minimizing the total harmonic distortion (THD) of the multi-level inverter (MLI). An AI technique is a mixture of an ALO and ANFIS, which controls the parameters of the inverter. The innovation of the proposed technique is improving the performance of the MLI, which is reducing the THD based on the output voltage waveform. Normally, the output voltage of the inverter is based on the switching angle of MLI. Then the proposed technique is utilized to optimize the switching angle and THD of the inverter. Here, the ALO is used to analyze the switching angle of the MLI with the aid of the fitness function. ANFIS is familiar with optimizing the switching angle from the ALO algorithm output. By the implementation of the proposed technique, decrease the value of THD in the MLI for gathering the performance of the system. Asymmetrical MLI is used in the proposed model and it wishes to separate DC supply to activate. For skilled activation, the optimal outcomes and the objective functions are well-definite and recognize their restriction similarly. The proposed technique was realized in MATLAB/Simulink platform and compared with the prevailing techniques such as particle swarm optimization (PSO)-ANFIS, genetic algorithm (GA)-Artificial Neural Networks (ANN) and ANN-ALO.

2015 ◽  
Vol 793 ◽  
pp. 167-171
Author(s):  
Mohd Aizuddin Yusof ◽  
Yee Chyan Tan ◽  
M. Othman ◽  
S.S. Lee ◽  
M.A. Roslan ◽  
...  

Multilevel inverters are one of the preferred inverter choices for solar photovoltaic (PV) applications. While these inverters are capable of producing AC staircase output voltage waveform, the total harmonic distortion (THD) of the output voltage waveform can become worse if the switching angle of each voltage level is not carefully chosen. In this paper, four switching angle arrangement techniques are presented and the switching angles generated by these techniques are applied to a new single-phase boost multilevel (SPBM) inverter. The performance of 3-, 5-, 7-, 9-and 11-level SPBM inverter having four different sets of switching angles derived using the aforementioned techniques have been evaluated and compared using PSIM software. Simulation results show that one of the techniques is able to produce an output voltage waveform with the lowest THD, whilst the other generates an output voltage waveform with the highest fundamental voltage component.


Author(s):  
Abeera D. Roy ◽  
Chandrahasan Umayal

Background: In Multilevel Inverters (MLI) as the number of level increases, there is a proportionate increase in the count of the semiconductor devices that are employed. Methods: This paper deals with an asymmetrical cascaded H-bridge inverter topology with half bridge cells to produce seven level output voltage waveform. Nearest Level Control (NLM) technique is used to produce the switching pulses. The operating principle of the proposed MLI and its performance abilities is verified through MATLAB/Simulink and a prototype is developed to provide the experimental results. Results: Total Harmonic Distortion (THD) is computed for proposed MLI for different types of loads in simulation environment as well as in the developed hardware prototype. Comparison between the proposed MLI and recent topologies demonstrates the advantageous features. Conclusion: The simulation and hardware results confirm the suitability of the proposed seven level MLI as the total component count, and the requirement of DC sources reduces considerably.


2021 ◽  
Vol 23 (2) ◽  
pp. 131-136
Author(s):  
Aneel Kumar Maheshwari ◽  
Mukhtiar Ahmed Mahar ◽  
Abdul Sattar Larik ◽  
Abdul Hameed Soomro

The paper introduces the cascaded H-Bridge multi-level inverter with single-phase arrangement connected series with full-bridge inverter and CHBMLI configuration integrated with Double level circuit is proposed to reduce the harmonic distortion to get high power quality. In the proposed configuration, a half-bridge inverter has been implemented to increase the output voltage waveform nearly twice as compared with the conventional Cascaded H-Bridge MLI. For high Power quality, the output voltage waveform with the reference of sinusoidal, the phase opposition disposition carrier arrangement has been utilized in PWM for producing gate pulse of switches. The high waveform of output voltage achieved with the less no of switches, less % THD distortion, less conduction and switching losses. The purposed symmetrical model of CHBMLI is successfully verified using MATLAB based on simulation with DLC configuration.


Author(s):  
AMALA MINU C K ◽  
DARSANA VIJAY

In this project a design of application-based adaptable level three-phase diode clamped multilevel voltage source inverter is proposed. The inverter is designed in a fussy manner, that different levels of the inverter can be designed and simulated in a single circuit. Using select input he level switching of inverter is done. A Mat lab/Simulink model of the proposed design is modeled and simulated, with the gating signals generated using FPGA. A Phase opposition disposition sinusoidal PWM (PODSPWM) algorithm is used for generation of gating signals. The harmonic analysis of the output voltage waveform for each levels of inverter is done separately and using proposed model, verified the result. A comparison of total harmonic distortion of different levels of inverter is done. The t o t a l harmonic distortion is very low for higher level inverter. The FPGA implementation of gating signals for the proposed model is done using Xilinx Spartan 3 XCS400PQ208.


Author(s):  
Trong-Thang Nguyen

<p>In this study, the author analyzes the advantages and disadvantages of multi-level inverter compared to the traditional two-level inverter and then chose the suitable inverter. Specifically, the author analyzes and designs the three-level inverter, including the power circuit design and control circuit design. All designs are verified through the numerical simulation on Matlab. The results show that even though the three-level inverter has a low number of switches (only 12 switches), but the quality is very good: the total harmonic distortion is small; the output voltage always follows the reference voltage.</p>


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 268 ◽  
Author(s):  
Ali Shojaei ◽  
Bahram Najafi ◽  
Hani Vahedi

In this paper the standalone operation of the modified seven-level Packed U-Cell (MPUC) inverter is presented and analyzed. The MPUC inverter has two DC sources and six switches, which generate seven voltage levels at the output. Compared to cascaded H-bridge and neutral point clamp multilevel inverters, the MPUC inverter generates a higher number of voltage levels using fewer components. The experimental results of the MPUC prototype validate the appropriate operation of the multilevel inverter dealing with various load types including motor, linear, and nonlinear ones. The design considerations, including output AC voltage RMS value, switching frequency, and switch voltage rating, as well as the harmonic analysis of the output voltage waveform, are taken into account to prove the advantages of the introduced multilevel inverter.


2018 ◽  
Vol 7 (3) ◽  
pp. 1059
Author(s):  
Mustafa Fawzi Mohammed ◽  
Ali Husain Ahmad ◽  
AbdulRahim Thiab Humod

The most concerns in the inverter's design are about, how to make the output voltage of the inverter sinusoidal at the desired fundamental frequency with low total harmonic distortion (THD). This paper presents a design and implementation of single-phase five-level inverter which is powered by single dc source and based on T-type multi-level inverters construction. The proposed inverter is built mainly by six IGBTs and two diodes. The used modulation technique is based on using two triangular carriers at 2000 Hz frequency and shifted by phase opposition disposition (POD) method. The carriers are made slightly unbalanced with their amplitudes. The over-modulation method is also introduced in the design to get the lowest possible THD effect without using filters. The inverter is simulated by MATLAB SIMULINK, implemented practically, and tested with the help of LabVIEW software.  


2022 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Madhu Andela ◽  
Ahmmadhussain Shaik ◽  
Saicharan Beemagoni ◽  
Vishal Kurimilla ◽  
Rajagopal Veramalla ◽  
...  

This paper deals with a reduced switch multi-level inverter for the solar photovoltaic system-based 127-level multi-level inverter. The proposed technique uses the minimum number of switches to achieve the maximum steps in staircase AC output voltage when compared to the flying capacitor multi-level inverter, cascaded type multilevel inverter and diode clamped multi-level inverter. The use of a minimum number of switches decreases the cost of the system. To eliminate the switching losses, in this topology a square wave switch is used instead of pulse width modulation. Thereby the total harmonic distortion (THD) and harmonics have been reduced in the pulsating AC output voltage waveform. The performance of 127-level MLI is compared with 15 level, 31-level and 63-level multilevel inverters. The outcomes of the solar photovoltaic system-based 127-level multi-level inverter have been simulated in a MATLAB R2009b environment.


2015 ◽  
Vol 16 (1) ◽  
pp. 30
Author(s):  
S. Mahendran ◽  
Gnanambal I ◽  
Maheswari A

This paper mainly deals with the design of AC chopper using Genetic Algorithm based harmonic elimination technique. Genetic Algorithm is used to calculate optimum switching angles to eliminate lower order harmonics in the output voltage. Total Harmonic Distortion of output voltage is calculated from the obtained switching angles and also adopted in the proposed fitness function. Comparative analysis is made for the switching angles obtained by the Newton Raphson method and the proposed Genetic Algorithm. The analysis reveals that the proposed technique is on par with conventional method. Additionally, the Genetic Algorithm approach offers less computational burden, guaranteed global optima in most cases and faster convergence. The proposed method is simulated in Matlab/Simulink model and the results shows that the proposed method works with high effectiveness, accuracy and rapidity.


Sign in / Sign up

Export Citation Format

Share Document