scholarly journals Conformal invariance and the metrication of the fundamental forces

2016 ◽  
Vol 25 (12) ◽  
pp. 1644003 ◽  
Author(s):  
Philip D. Mannheim

We revisit Weyl’s metrication (geometrization) of electromagnetism. We show that by making Weyl’s proposed geometric connection be pure imaginary, not only are we able to metricate electromagnetism, an underlying local conformal invariance makes the geometry be strictly Riemannian and prevents observational gravity from being complex. Via torsion, we achieve an analogous metrication for axial-vector fields. We generalize our procedure to Yang–Mills theories, and achieve a metrication of all the fundamental forces. Only in the gravity sector does our approach differ from the standard picture of fundamental forces, with our approach requiring that standard Einstein gravity be replaced by conformal gravity. We show that quantum conformal gravity is a consistent and unitary quantum gravitational theory, one that, unlike string theory, only requires four spacetime dimensions.

1989 ◽  
Vol 04 (07) ◽  
pp. 1681-1733 ◽  
Author(s):  
C. D. ROBERTS ◽  
J. PRASCHIFKA ◽  
R. T. CAHILL

We consider the quantum field theory of a model of an extended Nambu-Jona-Lasinio type with a QCD based nonlocal fermion current-current interaction which has global SU(Nc) symmetry. We obtain an exact bosonization of this model in four Euclidean dimensions using auxiliary bilocal fields and discuss the dynamical breakdown of chiral symmetry in the massless fermion limit. A local field bosonization is obtained by decomposing the bilocal fields in terms of complete orthonormal sets of functions with the expansion coefficients, which are local functions, identified as the local meson fields. Retaining the ground state pseudoscalar, vector and pseudovector local fields we obtain a local effective action for this sector of the theory. The derivative expansion of the fermionic determinant necessary to obtain this local action is self-regularizing because of the bilocal substructure present in the model which is manifest in the form factors that are associated with the local fields. In our local action the value of each coefficient depends critically on the underlying fermionic dynamics through these form factors and the vacuum functions. As a consequence of this the vector and pseudovector fields in the theory are best interpreted as simple fermion-antifermion bound states rather than as massive Yang-Mills fields or exotic composites of the pseudoscalars; interpretations that we find are not in general admitted when models such as the GCM are treated correctly. Identifying then the physical vector and pseudovector fields with the linearly transforming chiral partners introduced by the bosonization, we obtain an effective action for this sector of the meson spectrum which predicts values for the kinematic and dynamic quantities associated with these fields.


2009 ◽  
Vol 06 (03) ◽  
pp. 385-417 ◽  
Author(s):  
CARLOS CASTRO PERELMAN

We continue to study the Chern–Simons E8 Gauge theory of Gravity developed by the author which is a unified field theory (at the Planck scale) of a Lanczos–Lovelock Gravitational theory with a E8 Generalized Yang–Mills (GYM) field theory, and is defined in the 15D boundary of a 16D bulk space. The Exceptional E8 Geometry of the 256-dim slice of the 256 × 256-dimensional flat Clifford (16) space is explicitly constructed based on a spin connection [Formula: see text], that gauges the generalized Lorentz transformations in the tangent space of the 256-dim curved slice, and the 256 × 256 components of the vielbein field [Formula: see text], that gauge the nonabelian translations. Thus, in one-scoop, the vielbein [Formula: see text] encodes all of the 248 (nonabelian) E8 generators and 8 additional (abelian) translations associated with the vectorial parts of the generators of the diagonal subalgebra [Cl(8) ⊗ Cl(8)] diag ⊂ Cl(16). The generalized curvature, Ricci tensor, Ricci scalar, torsion, torsion vector and the Einstein–Hilbert–Cartan action is constructed. A preliminary analysis of how to construct a Clifford Superspace (that is far richer than ordinary superspace) based on orthogonal and symplectic Clifford algebras is presented. Finally, it is shown how an E8 ordinary Yang–Mills in 8D, after a sequence of symmetry breaking processes E8 → E7 → E6 → SO(8, 2), and performing a Kaluza–Klein–Batakis compactification on CP2, involving a nontrivial torsion, leads to a (Conformal) Gravity and Yang–Mills theory based on the Standard Model in 4D. The conclusion is devoted to explaining how Conformal (super) Gravity and (super) Yang–Mills theory in any dimension can be embedded into a (super) Clifford-algebra-valued gauge field theory.


1988 ◽  
Vol 03 (05) ◽  
pp. 497-509 ◽  
Author(s):  
K. BABU JOSEPH ◽  
M. SABIR

Based on an algebraic decomposition of a fourth rank tensor in terms of second rank tensors we suggest a reformulation of Einstein’s gravitational theory as a flat space gauge theory. This has been done by associating a curved manifold with a flat space U(2)×U(2) gauge theory. It is shown that while, in order to reproduce Einstein field equations one has to use a non-Yang-Mills action, the linearized equations follow from a Yang-Mills action. A relation between the metric and gauge fields is obtained. The consistency of the postulates is also verified.


2007 ◽  
Vol 22 (13) ◽  
pp. 915-930 ◽  
Author(s):  
IAN SWANSON

Marginal β deformations of [Formula: see text] super-Yang–Mills theory are known to correspond to a certain class of deformations of the S5 background subspace of type IIB string theory in AdS5×S5. An analogous set of deformations of the AdS5 subspace is reviewed here. String energy spectra computed in the near-pp-wave limit of these backgrounds match predictions encoded by discrete, asymptotic Bethe equations, suggesting that the twisted string theory is classically integrable in this regime. These Bethe equations can be derived algorithmically by relying on the existence of Lax representations, and on the Riemann–Hilbert interpretation of the thermodynamic Bethe ansatz. This letter is a review of a seminar given at the Institute for Advanced Study, based on research completed in collaboration with McLoughlin.


1985 ◽  
Vol 32 (10) ◽  
pp. 2713-2721 ◽  
Author(s):  
Sanjay Jain ◽  
R. Shankar ◽  
Spenta R. Wadia

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Kimyeong Lee

Abstract We explore 6d (1, 0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an E8 wall. Specifically, we study the 2d $$ \mathcal{N} $$ N = (0, 4) gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0, 4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dual strings in 6d E-string theory for multiple M5-branes probing the E8 wall, and find their fully refined elliptic genera.


2007 ◽  
Vol 16 (06) ◽  
pp. 1027-1041 ◽  
Author(s):  
EDUARDO A. NOTTE-CUELLO ◽  
WALDYR A. RODRIGUES

Using the Clifford bundle formalism, a Lagrangian theory of the Yang–Mills type (with a gauge fixing term and an auto interacting term) for the gravitational field in Minkowski space–time is presented. It is shown how two simple hypotheses permit the interpretation of the formalism in terms of effective Lorentzian or teleparallel geometries. In the case of a Lorentzian geometry interpretation of the theory, the field equations are shown to be equivalent to Einstein's equations.


Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This chapter provides constructions of Lagrangians for various field models and discusses the basic properties of these models. Concrete examples of field models are constructed, including real and complex scalar field models, the sigma model, spinor field models and models of massless and massive free vector fields. In addition, the chapter discusses various interactions between fields, including the interactions of scalars and spinors with the electromagnetic field. A detailed discussion of the Yang-Mills field is given as well.


Sign in / Sign up

Export Citation Format

Share Document