scholarly journals VANISHING OF THE COSMOLOGICAL CONSTANT, STABILITY OF THE DILATON AND INFLATION

1996 ◽  
Vol 05 (05) ◽  
pp. 567-578
Author(s):  
A. DE LA MACORRA

We study the possibility of canceling the cosmological constant in supergravity string models. We show that with a suitable choice of superpotential the vacuum energy may vanish with the dilaton field at its minimum and supersymmetry broken with a large hierarchy. We derive the condition for which the introduction of a chiral potential, e.g. the inflaton potential, does not destabilize the dilaton field even in the region where the scalar potential takes positive values. This allows for an inflationary potential with the dilaton frozen at its minimum.

1996 ◽  
Vol 11 (19) ◽  
pp. 3439-3477 ◽  
Author(s):  
JORGE L. LOPEZ ◽  
D.V. NANOPOULOS

We explore the postulates of string no-scale supergravity in the context of free-fermionic string models. The requirements of vanishing vacuum energy, flat directions of the scalar potential, and stable no-scale mechanism impose strong restrictions on possible string no-scale models, which must possess only two or three moduli, and a constrained massless spectrum. The soft-supersymmetry-breaking parameters involving all twisted and untwisted fields are given explicitly. Our calculations take into account the possible existence of an anomalous U A(1) factor in the gauge group, and reveal some novel effects concerning the stability of the no-scale mechanism in the presence of U A(1). This class of models contains no free parameters, i.e. in principle all supersymmetric particle masses and interactions are completely determined. A computerized search for free-fermionic models with the desired properties yields a candidate SU (5)×U(1) model containing extra [Formula: see text] matter representations that allow gauge coupling unification at the string scale. Our candidate model possesses a benign nonuniversal assignment of supersymmetry-breaking scalar masses, which may have interesting low-energy experimental consequences.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Ivano Basile ◽  
Stefano Lanza

Abstract We study de Sitter configurations in ten-dimensional string models where supersymmetry is either absent or broken at the string scale. To this end, we derive expressions for the cosmological constant in general warped flux compactifications with localized sources, which yield no-go theorems that extend previous works on supersymmetric cases. We frame our results within a dimensional reduction and connect them to a number of Swampland conjectures, corroborating them further in the absence of supersymmetry. Furthermore, we construct a top-down string embedding of de Sitter brane-world cosmologies within unstable anti-de Sitter landscapes, providing a concrete realization of a recently revisited proposal.


2009 ◽  
Vol 18 (14) ◽  
pp. 2265-2268 ◽  
Author(s):  
VIQAR HUSAIN

We describe a link between the cosmological constant problem and the problem of time in quantum gravity. This arises from examining the relationship between the cosmological constant and vacuum energy in light of nonperturbative formulations of quantum gravity.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Nana Cabo Bizet ◽  
Cesar Damian ◽  
Oscar Loaiza-Brito ◽  
Damián Kaloni Mayorga Peña ◽  
J. A. Montañez-Barrera

Abstract We consider Type IIB compactifications on an isotropic torus $$T^6$$T6 threaded by geometric and non geometric fluxes. For this particular setup we apply supervised machine learning techniques, namely an artificial neural network coupled to a genetic algorithm, in order to obtain more than sixty thousand flux configurations yielding to a scalar potential with at least one critical point. We observe that both stable AdS vacua with large moduli masses and small vacuum energy as well as unstable dS vacua with small tachyonic mass and large energy are absent, in accordance to the refined de Sitter conjecture. Moreover, by considering a hierarchy among fluxes, we observe that perturbative solutions with small values for the vacuum energy and moduli masses are favored, as well as scenarios in which the lightest modulus mass is much smaller than the corresponding AdS vacuum scale. Finally we apply some results on random matrix theory to conclude that the most probable mass spectrum derived from this string setup is that satisfying the Refined de Sitter and AdS scale conjectures.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944005
Author(s):  
Samir D. Mathur

The vacuum must contain virtual fluctuations of black hole microstates for each mass [Formula: see text]. We observe that the expected suppression for [Formula: see text] is counteracted by the large number [Formula: see text] of such states. From string theory, we learn that these microstates are extended objects that are resistant to compression. We argue that recognizing this ‘virtual extended compression-resistant’ component of the gravitational vacuum is crucial for understanding gravitational physics. Remarkably, such virtual excitations have no significant effect for observable systems like stars, but they resolve two important problems: (a) gravitational collapse is halted outside the horizon radius, removing the information paradox, (b) spacetime acquires a ‘stiffness’ against the curving effects of vacuum energy; this ameliorates the cosmological constant problem posed by the existence of a planck scale [Formula: see text].


Physics ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 321-338 ◽  
Author(s):  
Frans R. Klinkhamer ◽  
Osvaldo P. Santillán ◽  
Grigory E. Volovik ◽  
Albert Zhou

We consider a finite-size spherical bubble with a nonequilibrium value of the q-field, where the bubble is immersed in an infinite vacuum with the constant equilibrium value q 0 for the q-field (this q 0 has already cancelled an initial cosmological constant). Numerical results are presented for the time evolution of such a q-bubble with gravity turned off and with gravity turned on. For small enough bubbles and a q-field energy scale sufficiently below the gravitational energy scale E Planck , the vacuum energy of the q-bubble is found to disperse completely. For large enough bubbles and a finite value of E Planck , the vacuum energy of the q-bubble disperses only partially and there occurs gravitational collapse near the bubble center.


2019 ◽  
Vol 34 (12) ◽  
pp. 1950061
Author(s):  
M. Butler ◽  
A. M. Ghezelbash

We present novel classes of nonstationary solutions to the five-dimensional generalized Einstein–Maxwell-dilaton theory with cosmological constant, in which the Maxwell’s field and the cosmological constant couple to the dilaton field. In the first class of solutions, the two nonzero coupling constants are different, while in the second class of solutions, the two coupling constants are equal to each other. We find consistent cosmological solutions with positive, negative or zero cosmological constant, where the cosmological constant depends on the value of one coupling constant in the theory. Moreover, we discuss the physical properties of the five-dimensional solutions and the uniqueness of the solutions in five dimensions by showing the solutions with different coupling constants cannot be uplifted to any Einstein–Maxwell theory in higher dimensions.


Sign in / Sign up

Export Citation Format

Share Document