scholarly journals SECONDARY PULMONARY TUBERCULOSIS RECOGNITION BY ROTATION ANGLE VECTOR GRID-BASED FRACTIONAL FOURIER ENTROPY

Fractals ◽  
2021 ◽  
Author(s):  
SHUI-HUA WANG ◽  
YELIZ KARACA ◽  
XIN ZHANG ◽  
YU-DONG ZHANG

Aim: Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis bacteria. This study plans to build a novel deep learning-based model for the accurate recognition of tuberculosis. Methods: We propose a novel model — rotation angle vector grid-based fractional Fourier entropy and deep stacked sparse autoencoder (RAVG-FrFE–DSSAE) — which uses RAVG-FrFE as a feature extractor and harnesses DSSAE as the classifier. Moreover, an 18-way MDA is introduced on the training set to avoid overfitting. Results: Experimental results of 10 runs of 10-fold CV showcase that this proposed RAVG-FrFE–DSSAE algorithm yields a reasonable performance including of 93.68[Formula: see text]±[Formula: see text]1.11% sensitivity, 94.38[Formula: see text]±[Formula: see text]1.11% specificity, 94.35[Formula: see text]±[Formula: see text]1.04% precision, 94.03[Formula: see text]±[Formula: see text]0.69% accuracy, 94.01[Formula: see text]±[Formula: see text]0.70% [Formula: see text]-score, 88.07[Formula: see text]±[Formula: see text]1.38% MCC, 94.01[Formula: see text]±[Formula: see text]0.70% FMI, and 0.9725 AUC, respectively. Conclusions: Our result outperforms the eight state-of-the-art approaches. Besides, the result shows the effectiveness of the 18-way MDA.

2022 ◽  
Vol 13 (1) ◽  
pp. 1-20
Author(s):  
Shui-Hua Wang ◽  
Xin Zhang ◽  
Yu-Dong Zhang

( Aim ) COVID-19 has caused more than 2.28 million deaths till 4/Feb/2021 while it is still spreading across the world. This study proposed a novel artificial intelligence model to diagnose COVID-19 based on chest CT images. ( Methods ) First, the two-dimensional fractional Fourier entropy was used to extract features. Second, a custom deep stacked sparse autoencoder (DSSAE) model was created to serve as the classifier. Third, an improved multiple-way data augmentation was proposed to resist overfitting. ( Results ) Our DSSAE model obtains a micro-averaged F1 score of 92.32% in handling a four-class problem (COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy control). ( Conclusion ) Our method outperforms 10 state-of-the-art approaches.


2019 ◽  
Vol 11 (16) ◽  
pp. 1933 ◽  
Author(s):  
Yangyang Li ◽  
Ruoting Xing ◽  
Licheng Jiao ◽  
Yanqiao Chen ◽  
Yingte Chai ◽  
...  

Polarimetric synthetic aperture radar (PolSAR) image classification is a recent technology with great practical value in the field of remote sensing. However, due to the time-consuming and labor-intensive data collection, there are few labeled datasets available. Furthermore, most available state-of-the-art classification methods heavily suffer from the speckle noise. To solve these problems, in this paper, a novel semi-supervised algorithm based on self-training and superpixels is proposed. First, the Pauli-RGB image is over-segmented into superpixels to obtain a large number of homogeneous areas. Then, features that can mitigate the effects of the speckle noise are obtained using spatial weighting in the same superpixel. Next, the training set is expanded iteratively utilizing a semi-supervised unlabeled sample selection strategy that elaborately makes use of spatial relations provided by superpixels. In addition, a stacked sparse auto-encoder is self-trained using the expanded training set to obtain classification results. Experiments on two typical PolSAR datasets verified its capability of suppressing the speckle noise and showed excellent classification performance with limited labeled data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Aqeel Aslam ◽  
Cuili Xue ◽  
Yunsheng Chen ◽  
Amin Zhang ◽  
Manhua Liu ◽  
...  

AbstractDeep learning is an emerging tool, which is regularly used for disease diagnosis in the medical field. A new research direction has been developed for the detection of early-stage gastric cancer. The computer-aided diagnosis (CAD) systems reduce the mortality rate due to their effectiveness. In this study, we proposed a new method for feature extraction using a stacked sparse autoencoder to extract the discriminative features from the unlabeled data of breath samples. A Softmax classifier was then integrated to the proposed method of feature extraction, to classify gastric cancer from the breath samples. Precisely, we identified fifty peaks in each spectrum to distinguish the EGC, AGC, and healthy persons. This CAD system reduces the distance between the input and output by learning the features and preserve the structure of the input data set of breath samples. The features were extracted from the unlabeled data of the breath samples. After the completion of unsupervised training, autoencoders with Softmax classifier were cascaded to develop a deep stacked sparse autoencoder neural network. In last, fine-tuning of the developed neural network was carried out with labeled training data to make the model more reliable and repeatable. The proposed deep stacked sparse autoencoder neural network architecture exhibits excellent results, with an overall accuracy of 98.7% for advanced gastric cancer classification and 97.3% for early gastric cancer detection using breath analysis. Moreover, the developed model produces an excellent result for recall, precision, and f score value, making it suitable for clinical application.


2017 ◽  
Vol 107 (09) ◽  
pp. 590-593
Author(s):  
T. Schneider ◽  
J. Wortmann ◽  
B. Eilert ◽  
M. Stonis ◽  
L. Prof. Overmeyer

Das Erfassen von Drehmomenten durch Sensoren sowie das Erzeugen von Drehmomenten stellen eine wichtige Basis für viele Industriezweige dar. Im Rahmen eines Forschungsprojektes wurde ein optisches, berührungsloses Messverfahren zur absoluten Drehwinkel- und Drehmomentmessung entwickelt. Zum Vergleich mit dem aktuellen Stand der Technik wurde ein Versuchsstand aufgebaut sowie ein Referenzdrehmomentsensor eingesetzt. Die Ergebnisse dieser Validierung werden in diesem Fachaufsatz vorgestellt.   The measurement of torque via sensors as well as the generation of torque are the basis of many industrial sectors. Within a research project an optical and non-contact measurement method to detect the absolute rotation angle and torque was developed. For comparison with the current state of the art torque sensors a test stand was built and compared to a reference torque sensor. The results of this validation are presented in the present paper.


Author(s):  
Trung Minh Nguyen ◽  
Thien Huu Nguyen

The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.


Author(s):  
Hengyi Cai ◽  
Hongshen Chen ◽  
Yonghao Song ◽  
Xiaofang Zhao ◽  
Dawei Yin

Humans benefit from previous experiences when taking actions. Similarly, related examples from the training data also provide exemplary information for neural dialogue models when responding to a given input message. However, effectively fusing such exemplary information into dialogue generation is non-trivial: useful exemplars are required to be not only literally-similar, but also topic-related with the given context. Noisy exemplars impair the neural dialogue models understanding the conversation topics and even corrupt the response generation. To address the issues, we propose an exemplar guided neural dialogue generation model where exemplar responses are retrieved in terms of both the text similarity and the topic proximity through a two-stage exemplar retrieval model. In the first stage, a small subset of conversations is retrieved from a training set given a dialogue context. These candidate exemplars are then finely ranked regarding the topical proximity to choose the best-matched exemplar response. To further induce the neural dialogue generation model consulting the exemplar response and the conversation topics more faithfully, we introduce a multi-source sampling mechanism to provide the dialogue model with both local exemplary semantics and global topical guidance during decoding. Empirical evaluations on a large-scale conversation dataset show that the proposed approach significantly outperforms the state-of-the-art in terms of both the quantitative metrics and human evaluations.


2020 ◽  
Vol 17 (3) ◽  
pp. 849-865
Author(s):  
Zhongqin Bi ◽  
Shuming Dou ◽  
Zhe Liu ◽  
Yongbin Li

Neural network methods have been trained to satisfactorily learn user/product representations from textual reviews. A representation can be considered as a multiaspect attention weight vector. However, in several existing methods, it is assumed that the user representation remains unchanged even when the user interacts with products having diverse characteristics, which leads to inaccurate recommendations. To overcome this limitation, this paper proposes a novel model to capture the varying attention of a user for different products by using a multilayer attention framework. First, two individual hierarchical attention networks are used to encode the users and products to learn the user preferences and product characteristics from review texts. Then, we design an attention network to reflect the adaptive change in the user preferences for each aspect of the targeted product in terms of the rating and review. The results of experiments performed on three public datasets demonstrate that the proposed model notably outperforms the other state-of-the-art baselines, thereby validating the effectiveness of the proposed approach.


Author(s):  
Daniel D. Harabor ◽  
Tansel Uras ◽  
Peter J. Stuckey ◽  
Sven Koenig

In this paper, we define Jump Point Graphs (JP), a preprocessing-based path-planning technique similar to Subgoal Graphs (SG). JP allows for the first time the combination of Jump Point Search style pruning in the context of abstraction-based speedup techniques, such as Contraction Hierarchies. We compare JP with SG and its variants and report new state-of-the-art results for grid-based pathfinding.


Sign in / Sign up

Export Citation Format

Share Document