VUV SPECTROSCOPY OF CRYSTALLINE EMITTERS BASED ON 5d–4f TRANSITIONS IN RARE EARTH IONS

2002 ◽  
Vol 09 (01) ◽  
pp. 621-626 ◽  
Author(s):  
V. N. MAKHOV ◽  
N. YU. KIRIKOVA ◽  
N. M. KHAIDUKOV ◽  
M. KIRM ◽  
E. NEGODIN ◽  
...  

The spectroscopic properties of several fluoride crystals ( LiYF 4, KYF 4, K 2 YF 5, KLiYF 5, CsY 2 F 7, SrF 2) doped with Nd 3+, Er 3+ or Tm 3+ are analyzed from the viewpoint of their possible applications as active media for VUV solid state lasers. It has been found that in many crystals there exists very efficient nonradiative relaxation from higher-lying 5d states to the lowest 5d level responsible for the spin-forbidden luminescence. In fact, the energy level diagram of 5d–4f transitions for these two ions represents a typical four-level laser scheme with a considerably larger Stokes shift of 5d–4f luminescence from the edge of the strong spin-allowed 4f–5d absorption than for Nd 3+, which causes smaller reabsorption of emitted VUV radiation in the crystals doped with Er 3+ or Tm 3+. Two crystals LiYF 4: Nd 3+ and SrF 2: Er 3+ were tested for laser action under pumping by a pulsed F 2 laser operating at 157 nm. However, no indications of the appearance of stimulated emission have been detected for both crystals. The possible reasons for the absence of lasing are discussed.

2001 ◽  
Vol 667 ◽  
Author(s):  
Georges Boulon ◽  
Alain Brenier ◽  
Laetitia Laversenne ◽  
Yannick Guyot ◽  
Christelle Goutaudier ◽  
...  

ABSTRACTThe development of reliable InGaAs laser diode pump sources emitting in the 900-980 nm spectral range is stongly influencing the field of lasers based on Yb3+-doped solid state crystals. Ca5(PO4)3F (C-FAP) and S-FAP (Sr5(PO4)3F) were soon recognized to be favourable hosts for Yb3+ lasing in the nanosecond pulse regime. This fact was supported by an evaluation of the spectroscopic properties of several Yb3+-doped crystals useful for laser action. This evaluation is based on two parameters known from spectroscopy, the emission cross-section at the laser wavelength and the minimum pump intensity required to achieve transparency at the laser wavelength.We think there is a need of a new evaluation of Yb3+-doped crystals in order to predict the laser efficiency in a more realistic manner in different kinds of regimes. We present here the main spectroscopic properties of two Yb3+-doped laser crystals which are grown in our Group: (i) KY(WO4)2 double tungstates by the Floating Crystal method and (ii) Y2O3sesquioxides by the Laser Heated Pedestal Growth method. The approach, based on a quasi-three level laser model, leads to compare all known Yb3+-doped crystals in a two-dimensional diagram considering the laser extracted power and the slope efficiency. We shall show that tungstates and sesquioxides belong to the highest laser crystal potential in CW-end pumping configuration.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


2009 ◽  
Vol 31 (3) ◽  
pp. 567-574 ◽  
Author(s):  
J. Legendziewicz ◽  
M. Guzik ◽  
J. Cybińska

2016 ◽  
Vol 7 (3) ◽  
pp. 146-151 ◽  
Author(s):  
Eliziane Cossetin Vasconcelos ◽  
Jose Fernando Castanha Henriques ◽  
Marinês Vieira Silva Sousa ◽  
Cardoso de Oliveira ◽  
Alberto Consolaro ◽  
...  

Author(s):  
Lam Thi Ngoc Tran ◽  
Damiano Massella ◽  
Lidia Zur ◽  
Alessandro Chiasera ◽  
Stefano Varas ◽  
...  

The development of efficient luminescent systems, such as microcavities, solid state lasers, integrated optical amplifiers, optical sensors is the main topic in glass photonics. The building blocks of these systems are glass-ceramics activated by rare earth ions because they exhibit specific morphologic, structural and spectroscopic properties. Among various materials that could be used as nanocrystals to be imbedded in silica matrix, tin dioxide presents some interesting peculiarities, e.g. the presence of tin dioxide nanocrystals allows increase in both solubility and emission of rare earth ions. Here, we focus our attention on Er3+ - doped silica – tin dioxide photonic glass-ceramics fabricated by sol-gel route. Although the SiO2-SnO2:Er3+ could be fabricated in different geometrical systems: thin films, monoliths and planar waveguides we herein limit ourselves to the monoliths. The effective role of tin dioxide as luminescence sensitizer for Er3+ ions is confirmed by spectroscopic measurements and detailed fabrication protocols are discussed.


2020 ◽  
Vol 46 (11) ◽  
pp. 17252-17260 ◽  
Author(s):  
Guido Toci ◽  
Angela Pirri ◽  
Barbara Patrizi ◽  
Yagang Feng ◽  
Tengfei Xie ◽  
...  

The theory that has been developed for rare-earth ions in crystals is here applied to the double nitrates. The paramagnetic resonance data and certain spectroscopic properties of the different rare-earth double nitrates, depending as they do on the crystalline electric field at a rare-earth ion, are related to the six parameters through which the field is defined. It is found that most of the experimental results can be fitted to values of the parameters that vary in a systematic fashion along the rare-earth series.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wojciech A. Pisarski ◽  
Joanna Pisarska ◽  
Marta Kuwik ◽  
Marcin Kochanowicz ◽  
Jacek Żmojda ◽  
...  

AbstractFluoroindate glasses co-doped with Pr3+/Er3+ ions were synthesized and their near-infrared luminescence properties have been examined under selective excitation wavelengths. For the Pr3+/Er3+ co-doped glass samples several radiative and nonradiative relaxation channels and their mechanisms are proposed under direct excitation of Pr3+ and/or Er3+. The energy transfer processes between Pr3+ and Er3+ ions in fluoroindate glasses were identified. In particular, broadband near-infrared luminescence (FWHM = 278 nm) associated to the 1G4 → 3H5 (Pr3+), 1D2 → 1G4 (Pr3+) and 4I13/2 → 4I15/2 (Er3+) transitions of rare earth ions in fluoroindate glass is successfully observed under direct excitation at 483 nm. Near-infrared luminescence spectra and their decays for glass samples co-doped with Pr3+/Er3+ are compared to the experimental results obtained for fluoroindate glasses singly doped with rare earth ions.


2019 ◽  
Vol 1154 ◽  
pp. 80-90
Author(s):  
Mohammed Abdul Basheer ◽  
Vagmare Gangadhar ◽  
Guduru Prasad ◽  
Gobburu Subramanya Kumar ◽  
Nandi Venkata Prasad

Double rare-earth (La; Sm/Gd) substituted Aurivillius family of Bismuth Layered Structured Ferroelectrics (BLSF) namely Bi2.6Sm0.2La0.2TiNbO9 (BSLT; sample-A), Bi2.6Gd0.2La0.2TiNbO9 (BGLT; sample-B), single phase ceramics were prepared by solid state route. In addition, intergrowth (x BSLT - (1-x) BGLT, where x=0.49; sample-C) and solid solution (BSLT­x - BGLTy; where x + y=0.4; sample-D) materials were prepared. Dielectric, ferroelectric and Raman spectroscopic properties were studied on the said above materials. The X-ray diffraction analysis and Raman spectra revealed well-formation of stable structure. Though, the sample-C and sample-D have lower coercive field, compared to the sample-A and sample-B, but they exhibited sharp hysterisis loop. Therefore the instrinsic defects of sample-D inhabits more sensitivity towards the ferroelectric behaviour. The results were corroborated to the impedance and dielectrical data. The results were consistent with the SEM micrographs and complex impedance plots. An attempt is made to understand the effect of rare-earth ions on A-site of layered-pervoskite structure, defined as: (Bi2O2)2+(An-1BnO3n+1)2-.The term n represents number of pervoskite blocks interleaved with the bismuth oxide layers.


2005 ◽  
Vol 31 (4) ◽  
pp. 420-426 ◽  
Author(s):  
T. V. Bocharova ◽  
G. O. Karapetyan ◽  
A. M. Mironov ◽  
N. O. Tagil’tseva ◽  
O. V. Yanush

Sign in / Sign up

Export Citation Format

Share Document