THE PHYSICAL PROPERTIES OF XeCl EXCIMER PULSED LASER DEPOSITED n-C:P/p-Si PHOTOVOLTAIC SOLAR CELLS

2005 ◽  
Vol 12 (02) ◽  
pp. 167-172 ◽  
Author(s):  
M. RUSOP ◽  
T. SOGA ◽  
T. JIMBO

This paper reports on the successful deposition of phosphorus (P) -doped n-type (p-C:P) carbon (C) films, and fabrication of n-C:P/p-Si cells by pulsed laser deposition (PLD) using graphite target at room temperature. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100mW/cm2, 25°C). The n-C:P/p-Si cell fabricated using a target with the amount of P by 7 weight percentages (Pwt%) shows the highest energy conversion efficiency η = 1.14% and fill factor FF = 41%. The quantum efficiency (QE) of the n-C:P/p-Si cells are observed to improve with Pwt%. The dependence of P content on the electrical and optical properties of the deposited films and the photovoltaic characteristics of the n-C:P/p-Si heterojunction solar cell are discussed.

1988 ◽  
Vol 3 (6) ◽  
pp. 1180-1186 ◽  
Author(s):  
R. D. Vispute ◽  
V. P. Godbole ◽  
S. M. Chaudhari ◽  
S. M. Kanetkar ◽  
S. B. Ogale

Thin films of SnO2−x (0<x<1) were deposited on Corning glass and alumina substrates by employing a pulsed laser evaporation (PLE) technique. The microstructural features of the films were probed with Sn119 conversion electron Mössbaucr spectroscopy (CEMS) whereas the structural characteristics were identified by using low-angle x-ray diffraction measurements. The electrical and optical properties have also been studied. It is shown that films with conductivity of 3 × 102 (ohm·cm)−1 and transmission of 90% can be obtained by appropriate postannealing of the as-deposited films in air and vacuum. The energy gap of this nearly stoichiometric single-phase SnO2 film was found to be 3.5 eV and spectroscopic ellipsometry measurements indicated the refractive index lobe typically between 1.8–1.9 over the wavelength range of 400–800 nm.


2002 ◽  
Vol 750 ◽  
Author(s):  
Yoshifumi Aoi ◽  
Kojiro Ono ◽  
Kunio Sakurada ◽  
Eiji Kamijo

ABSTRACTAmorphous CNx thin films were deposited by pulsed laser deposition (PLD) combined with a nitrogen rf radical beam source which supplies active nitrogen species to the growing film surface. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), Raman scattering, and Fourier transform infrared (FTIR) spectroscopy. Nitrogen content of the deposited films increased with increasing rf input power and N2 pressure in the PLD chamber. The maximum N/C ratio 0.23 was obtained at 400 W of rf input power and 1.3 Pa. XPS N 1s spectra shows the existence of several bonding structures in the deposited films. Electrical properties of the deposited films were investigated. The electrical conductivity decreased with increasing N/C atomic ratio. Temperature dependence of electrical conductivity measurements indicated that electronic conduction occurred by variable-range hopping between p electron localized states.


2003 ◽  
Vol 42 (Part 1, No. 8) ◽  
pp. 4966-4972 ◽  
Author(s):  
Mohamad Rusop ◽  
Tetsuya Shirata ◽  
Prasad M. Sirimanne ◽  
Tetsuo Soga ◽  
Takashi Jimbo

2011 ◽  
Vol 485 ◽  
pp. 133-136 ◽  
Author(s):  
Ryoichi Saotome ◽  
Naoki Wakiya ◽  
Takanori Kiguchi ◽  
Jeffrey S. Cross ◽  
Osamu Sakurai ◽  
...  

Highly oriented and polycrystalline Gd2O3 doped CeO2 thin films were prepared on α-Al2O3(0001) substrates by chemical vapor deposition, using Ce(C5H4C2H5)3 and Gd(C5H4C2H5)3 as precursors. The compositions of the films were controlled by optimizing the vaporization pressure of Gd precursor under the constant vaporization condition of Ce precursor. In-plane electrical conductivities of the films at various temperatures and oxygen partial pressures were evaluated by electrochemical impedance spectroscopy measurements. The activation energy of the film was determined as 0.94 eV, which is comparable with that of pulsed laser deposited films.


2004 ◽  
Vol 1 (2) ◽  
pp. 239-246
Author(s):  
Baghdad Science Journal

A pulsed (TEA-0O2) laser was used to dissociate molecules of silane ethylene (C2I-14) and ammonia (NH3) gases, through collision assisted multiple photon dissociation (MPD) to deposit(SiC i_xNx) thin films, where the X-values are 0, 0.13 and 0.33, on glass substrate at T,----648 K. deposition rate of (0.416-0.833) nm/pulse and thickness of (500-1000)nm .Fourier transform infrared spectrometry (FT-IR) was used to study the nature of the chemical bonds that exist in the films. Results revealed that these films contain complex networks of the atomic (Si, C, and N), other a quantity of atomic hydrogen and chemical bonds such as (Si-N, C-N, C-14 and N-H).Absorbance and Transmittance spectra in the wavelength range (400-1100) nm were used to study the optical properties of the deposited films. It was found the optical nergy ap E0) of these films is indirect and increases with increasing (X) while the width of localized states decreases.The study of the electrical properties of the deposited films revealed that their electrical conductivity at any constant temperature decreases with increasing (X) and the films have two activation energies both increase with increasing (X).


RSC Advances ◽  
2014 ◽  
Vol 4 (78) ◽  
pp. 41294-41300 ◽  
Author(s):  
Y. S. Zou ◽  
H. P. Wang ◽  
S. L. Zhang ◽  
D. Lou ◽  
Y. H. Dong ◽  
...  

P-type Mg doped CuAlO2 films with high crystallinity are prepared by pulsed laser deposition followed by annealing, and exhibit enhanced conductivity and tunable optical band gaps.


2010 ◽  
Vol 25 (4) ◽  
pp. 680-686 ◽  
Author(s):  
Zhifeng Ying ◽  
Wentao Tang ◽  
Zhigao Hu ◽  
Wenwu Li ◽  
Jian Sun ◽  
...  

The structure and properties of HfO2 films deposited by plasma assisted reactive pulsed laser deposition and annealed in N2 were studied upon thermal annealing as well as the evaluation of thermal stability by Fourier transform infrared spectroscopy, spectroscopic ellipsometry, and optical transmission measurements. The as-deposited HfO2 films appear predominantly monoclinic with an amorphous matrix which becomes crystallized after high-temperature annealing. No interfacial SiOx is observed for the as-deposited films on Si. The deposited HfO2 films exhibit good thermal stability and show excellent transparency in a wide spectral range with optical band gap energies of 5.65–5.73 eV depending on annealing temperature. An improvement in the optical properties by high-temperature annealing is also observed.


Sign in / Sign up

Export Citation Format

Share Document