TRIBOLOGICAL BEHAVIOR OF ELECTROLESS Ni–P COATINGS IN VARIOUS CORROSIVE ENVIRONMENTS

2016 ◽  
Vol 23 (05) ◽  
pp. 1650040 ◽  
Author(s):  
BIKASH PANJA ◽  
SUMAN KALYAN DAS ◽  
PRASANTA SAHOO

The present paper deals with the study of tribological characteristics, viz. friction and wear, of electroless Ni–P coating in corrosive environments (brine, acidic and alkaline) by varying different coating process parameters as well as varying the tribological testing parameters, viz. applied load and speed. The optimized results of coating process parameters for minimum friction and wear performance of the coating are presented. Moreover, a detailed study of the tribological behavior of the coating is undertaken individually for the three corrosive environments. The results obtained are compared among each other and also with the dry condition test of the coating. It is found that the friction coefficient of Ni–P coating decreases with increase in load for all environments. In case of wear, the wear rate of Ni–P coating gradually increases with increase in load for all mediums but the same decreases after 40[Formula: see text]N in brine and alkaline mediums. However, for acidic solution, the wear rate shows a continuous increasing trend. It is observed that alkaline and brine environments are favorable from friction and wear point of view of the coating, respectively. Microstructure study of the coatings is also performed and the coating is found to be of cauliflower-like morphology. The coating also exhibits amorphous structure in as-deposited condition, which gradually turns crystalline with heat treatment.

Author(s):  
Bikash Panja ◽  
Prasanta Sahoo

The present study describes the synthesis of electroless Ni-P (nickel-phosphorous) coatings on mild steel substrate and optimization of the coating process parameters for minimum friction and wear in acidic (1M H2SO4) solution using Taguchi based grey relation analysis. The study is carried out using different combinations of four coating process parameters, namely, concentration of nickel source, concentration of reducing agent, deposition temperature and annealing temperature with three levels each. The tribological tests are conducted with a pin-on-disk tribometer. Analysis of variance reveals that annealing temperature has the maximum contribution in controlling the friction and wear characteristics of Ni-P coating. The coating is characterized using scanning electron microscopy, energy dispersive X-ray and XRD analysis, respectively. It is found that Ni-P coating is amorphous in as-deposited condition but gradually turns crystalline with heat treatment. Moreover the wear mechanism is found to be abrasive in nature.


2014 ◽  
Vol 554 ◽  
pp. 396-400 ◽  
Author(s):  
Samion Syahrullail ◽  
Noorawzi Nuraliza

In the present of analysis, the wear rate and friction coefficient of various material is investigated and it were compared below the result of sliding speed wherever the equipment pin on disk machine has been used. Experiments were carried out with 2 totally different pins fabricated from aluminum alloy (AA5083) and pure aluminum (A1100). Experiments were conducted at normal load in step with according to testing, 10 N with totally different sliding speed 1, 3, 5 m/s ,continuous flow lubricating substance, double fraction palm olein (DFPO). The result shows that the material from pure aluminum higher material compared to the aluminum alloy in sliding condition. The morphology of the worn surface was ascertained using high optical research. The magnitude of the friction constant and wear rate are totally different in material depending on the speeds and additionally material.


2010 ◽  
Vol 431-432 ◽  
pp. 385-388 ◽  
Author(s):  
Jian Hua Zhang ◽  
Pei Qi Ge ◽  
Lei Zhang ◽  
Yang Yu ◽  
Hui Li

The grind-hardening technology utilizes the grinding heat to harden the surface of the workpiece. The friction and wear performance of the grind-hardened layer is one of the important parameters. In this paper, the friction and wear performance of the grind-hardened layer was studied by the friction and wear experiment. The wear rate and the friction coefficient of the grind-hardened steel were studied by comparing with conventional hardened steel and non-hardened steel. The surface worn morphology and the collected wear debris of the grind-hardened steel were observed during the experiment. The wear mechanism of the grind-hardened steel was analyzed under different friction conditions.


2012 ◽  
Vol 184-185 ◽  
pp. 1400-1403
Author(s):  
Li Guo ◽  
Huan Qin Zhu ◽  
Yuan Bao Sun

The tribological behavior of PPS filled with molybdenum-concentrate (MC) deposit from Armenia was studied. The deposit MC was a complex mixture of compounds such as MoS2, SO2, CuS, Al2O3, and others. Whereas MC as the filler in particulate form reduced the steady state wear rate of PPS, the optimum reduction in wear was found to occur with the addition of PTFE along with PPS. The behavior of PPS composites made with MC and PTFE sliding against a steel counterface was investigated as a function of the MC and PTFE proportions, sliding speed, and counterface roughness. Of all the above factors, the change in MC proportion, while PTFE was also present, had the greatest effect on the reduction in wear rate. The variation of the coefficient of friction was found to be in the narrow range of 0.27-0.33. The lowest wear rate was found in the case of PPS+ 17vol.%MC+10vol.%PTFE composite sliding at 1.5 m/s against a counterface roughness of 0.1 μm Ra.


2016 ◽  
Vol 868 ◽  
pp. 18-22
Author(s):  
Hai Xia Guo ◽  
Nan Qu ◽  
Jian Feng Yang ◽  
Jun-Ichi Matsushita ◽  
Seung Ho Kim ◽  
...  

Two types of CuFe matrix composites with different reinforcements: silica and alumina particulates were developed using powder metallurgy. The mechanical properties were determined from Brinell hardness and flexural strength. The dry sliding friction and wear performance of the composites were investigated by the friction test. The results indicated that mechanical properties of alumina were superior to those of silica. The friction tests of the composites showed that the alumina reinforcement particle provides better braking performance. A wear track examination of composites showed that same abrasive wear. Our results indicated that composites with alumina reinforcement particles of high compatibility are to be preferred for braking performance.


2017 ◽  
Vol 05 (03) ◽  
pp. 1750010 ◽  
Author(s):  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

The present study considers the tribological behavior and corrosion resistance of electroless Ni-B-W coatings deposited on AISI 1040 steel substrates. Coating is characterized using scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction technique. In as-deposited condition, coatings are found to be amorphous. On heat treatment, precipitation of crystalline Ni (1 1 1) and its borides take place. For as-deposited coating, the microhardness is obtained as [Formula: see text]759[Formula: see text]HV[Formula: see text] which increases to [Formula: see text]1181[Formula: see text]HV[Formula: see text] and [Formula: see text]1098[Formula: see text]HV[Formula: see text] when heat treated at 350[Formula: see text]C and 450[Formula: see text]C, respectively. Incorporation of W in Ni-B coating results in an increase of hardness by 89[Formula: see text]HV[Formula: see text] in as-deposited condition. Heat treatment also results in increase in crystallite size of Ni (1 1 1). Wear rate and coefficient of friction (COF) of the coatings are evaluated on a pin-on-disc setup under both dry and lubricated sliding conditions. Wear resistance is observed to improve on heat treatment with an increase in crystallite size while COF deteriorates. However, in as-deposited condition, wear rate and COF of Ni-B-W coatings improve by [Formula: see text]5 and [Formula: see text]3 times, respectively, compared with Ni-B coatings. Wear and friction performance of the coatings are enhanced under lubrication due to the columnar structure of the coatings that retain lubricants. Corrosion resistance of Ni-B-W coating in 3.5% NaCl solution gets improved on heat treatment.


Author(s):  
Suman Kalyan Das ◽  
Prasanta Sahoo

In this paper, the authors present an experimental study of roughness characteristics of electroless Ni-B coatings and optimization of the coating process parameters based on L27 Taguchi orthogonal design. Three coating process parameters are considered viz. bath temperature, reducing agent concentration, and nickel source concentration. It is observed that concentration of reducing agent together with bath temperature play a vital role in controlling the roughness characteristics of the coatings. The analysis yields the optimum coating parameter combination for minimum roughness. A reduction of about 15% is observed in roughness at the optimal condition compared to the initial condition. The microstructure, composition, and the phase content of the coating are also studied with the help of scanning electron microscopes energy dispersive X-ray analysis, and X-ray diffraction analysis, respectively.


2015 ◽  
Vol 67 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Akin Akinci

Purpose – The purpose of this paper is to investigate the friction and wear performance of pure polycarbonate (PC) and 5-30 per cent wollastonite-filled (by weight) PC were comparatively evaluated under dry sliding conditions. Wear tests were carried out at room temperature under the loads of 5-20 N and at the sliding speeds of 0.5-1.5 m/s. Design/methodology/approach – The microstructures of the wollastonite, pure PC and composites were examined by optical microscopy, scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The friction and wear tests were realized using a pin-on-disk arrangement against the hardened AISI 4140 steel. Findings – The result of this study indicated that the coefficients of friction wear rate of the materials were significantly influenced by an increase in wollastonite content. The friction coefficient of the PC was getting decreased from 0.457 to 0.198 with an increase in wollastonite content, depending on applied loads and sliding speeds. On the other hand, the results showed that the wear rates of pure PC and wollastonite-filled PCs decreased with an increase in loads. The wear rate of the PC decreased from 1.2 × 10−6 to 8.7 × 10−6 mm3/m with an increase in wollastonite content, depending on applied loads. Originality/value – There are many reports which deal with the friction and wear performance of the polymers and polymer composites. However, the effect of wollastonite effect on tribological performance of PC has up to now not been extensively researched.


Author(s):  
Santanu Duari ◽  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

This paper presents an experimental study on tribological behavior of electroless Ni-B coating under lubricated condition based on Taguchi’s method. Mild steel specimens are used as the substrate material for the deposition of Ni-B coating and the thickness of the deposits is found to be around 35 μm. Based on Taguchi’s L27 orthogonal array of experiments, the wear tests are done on a pin-on-disc type tribotester This experiment is carried out by utilizing the combination of process parameters of the tribotester like normal load, sliding speed and duration of sliding. The analysis of the experimental data is carried out with the help of MINITAB® software package. It is seen that the normal load is the most significant factor followed by sliding time at 99% confidence level. The surface morphology, composition and compound analysis of the coatings are done by means of scanning electron microscope, energy dispersed X-ray micro-analyzer and X-ray diffraction analyzer respectively. Finally, a confirmation test is carried out to validate the analysis.


Author(s):  
Suman Kalyan Das ◽  
Prasanta Sahoo

In this paper, the authors present an experimental study of roughness characteristics of electroless Ni-B coatings and optimization of the coating process parameters based on L27 Taguchi orthogonal design. Three coating process parameters are considered viz. bath temperature, reducing agent concentration, and nickel source concentration. It is observed that concentration of reducing agent together with bath temperature play a vital role in controlling the roughness characteristics of the coatings. The analysis yields the optimum coating parameter combination for minimum roughness. A reduction of about 15% is observed in roughness at the optimal condition compared to the initial condition. The microstructure, composition, and the phase content of the coating are also studied with the help of scanning electron microscopes energy dispersive X-ray analysis, and X-ray diffraction analysis, respectively.


Sign in / Sign up

Export Citation Format

Share Document