STUDY OF Co/Sn MULTILAYER SYSTEM WITH VARIOUS TIN LAYER THICKNESS AND REFLOW TEMPERATURES

2019 ◽  
Vol 26 (03) ◽  
pp. 1850153
Author(s):  
ABDUL FAHEEM KHAN ◽  
A. S. M. A. HASEEB

Co–Sn–Co multi-layer films with various Sn-layer thicknesses have been deposited by using the electrodeposition technique. The deposition was performed at room temperature on gold coated silicon substrates. The thickness of Sn layer was kept [Formula: see text]4.5, 2.5, 1.5 and 1[Formula: see text][Formula: see text]m, while the thickness of each Co layer was fixed to [Formula: see text]0.75[Formula: see text][Formula: see text]m. The Sn layer was sandwiched between two Co layers. The total thickness of the films was [Formula: see text]6, 4, 3, 2.5[Formula: see text][Formula: see text]m, respectively. The intended ratio of Sn was about 25 at.% while Co was about 75 at.%. The separation inside the Sn-layer has been observed at higher Sn-layer thicknesses with increasing reflow temperature. It may be due to the combined effect of thermal stress arising during cooling from elevated reflow temperatures and solidification shrinkage in the thick Sn layer due to the formation of IMC CoSn2. However, 1[Formula: see text][Formula: see text]m has been found to be a critical thickness, which remains intact when sandwiched between two cobalt layers. The structure of these multi-layer films was studied as a function of temperature. It has been observed from X-ray diffraction (XRD) that the as-deposited films exhibit strong peaks belonging to elemental Co and Sn. At temperatures of 270–290∘C, CoSn2 begins to appear and grow at the interfaces and in the middle of Sn layer with the decrease in elemental Sn. However, sufficient amount of Co is still present in pure form as is evident by the XRD and field emission scanning electron microscopy images at all temperatures. This study confirms that only one reaction product, viz. CoSn2, formed in as-deposited during reflow at temperatures 270–290∘C for a fixed time of 10[Formula: see text]min, although several other stable IMCs, e.g. Co3Sn2, CoSn, CoSn2, CoSn3 exist in the Co–Sn system at 250∘C according to phase diagram. It is not uncommon that all the thermodynamically stable IMCs do not form in the system due to kinetic reasons. Accordingly, the formation of IMCs through interfacial reaction has been discussed in this paper.

2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Swati Arora ◽  
Vivek Jaimini ◽  
Subodh Srivastava ◽  
Y. K. Vijay

Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te) and bismuth (Bi) were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show granular growth.


2018 ◽  
Vol 21 (1) ◽  
pp. 015-019
Author(s):  
P. Jeyakumar ◽  
S. Thanikaikarasan ◽  
B. Natarajan ◽  
T. Mahalingam ◽  
Luis Ixtlilco

Copper Telluride thin films have been prepared on Fluorine doped Tin Oxide coated conducting glass substrates using electrodeposition technique. Cyclic voltammetric analysis has been carried out to analyze the growth mechanism of the deposited films. Thickness value of the deposited films has been estimated using Stylus profilometry. X-ray diffraction pattern revealed that the prepared films possess polycrystalline in nature. Microstructural parameters such as crystallite size, strain and dislocation density are evaluated using observed X-ray diffraction data. Optical absorption analysis showed that the prepared films are found to exhibit band gap value around 2.03 eV.


Cerâmica ◽  
2016 ◽  
Vol 62 (364) ◽  
pp. 405-412 ◽  
Author(s):  
S. Kasrani ◽  
A. Harabi ◽  
S.-E. Barama ◽  
L. Foughali ◽  
M. T. Benhassine ◽  
...  

Abstract In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 1013 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9.


2010 ◽  
Vol 152-153 ◽  
pp. 697-701
Author(s):  
Bing Wang ◽  
Ling Li

A new nanostructure, (2D) nanopetal of SnO2, has been grown on single silicon substrates by Au-Ag alloying catalyst assisted carbothermal evaporation of SnO2. Field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and Raman are employed to identify the morphology and structure of the synthesized productions. Room-temperature photoluminescence (PL) is used to characterize the luminescence of SnO2 nanostructure. Three new peaks at 356, 450 and 489 nm in the measured photoluminescence spectra are observed, implying that more luminescence centers exist in SnO2 nanopetals due to nanocrystals and defects. The growth of the SnO2 nanopetals is discussed on the basis of the self-catalyst mechanism.


1992 ◽  
Vol 285 ◽  
Author(s):  
P. Tiwari ◽  
R. Chowdhury ◽  
J. Narayan

ABSTRACTLaser physical vapor deposition (LPVD) has been used to deposit thin CoSi2 films on (001)silicon at different substrate temperatures ranging from room temperature to 600°C. Particulate-free silicide thin films were characterized by X-ray diffraction, Rutherford backscattering, and high resolution transmission electron microscopy. We have found that films deposited at 200°C and below are amorphous; 400°C deposited films are polycrystalline whereas films deposited at 600°C are of epitaxial nature. The Effect of subsequent annealing on resistivity of room-temperature deposited thin films has been investigated. The resistivity value decreases to less than 15 μΩcm after annealing making these films suitable for microelectronics applications. The correlation between microstructure and properties of these films are discussed.


2003 ◽  
Vol 784 ◽  
Author(s):  
Atsushi Kohno ◽  
Fumitake Ishitsu ◽  
Kazuhiro Matuo ◽  
Hiroyuki Tomari

ABSTRACTPolycrystalline Bi4-xLaxTi3O12 (BLT) thin films were formed on p-Si(100) substrates. Crystallization of the film was investigated quantitatively by X-ray diffraction (XRD) and X-ray reflection (XRR) analyses. The film was crystallized onto bismuth-oxide layered perovskite structure when annealing temperatures became higher than 550°C. The annealing time dependence of diffraction intensity and peak width indicated that grain growth occurred during crystallization. Moreover, it was shown that the average crystal dimension in the BLT film reached ca. 60 nm by 120-min annealing. That value is comparable to the B LT thickness. Film thickness and density were evaluated by XRR analysis. Simulation fitting showed that the BLT film was densified and that an interfacial layer was formed during crystallization. Pole figure measurements also suggested that the c-axis of B LT was preferentially oriented to nearly parallel the surface. Clockwise hysteresis loops were observed at room temperature in capacitance-voltage (C-V) characteristics of Au/BLT/p-Si structures. The coercive field and the dielectric constant of 65 nm-thick BLT films crystallized at 550°C for 60 min were evaluated to be ca. 23 kV/cm and ca. 17, respectively.


2011 ◽  
Vol 25 (22) ◽  
pp. 2983-2990 ◽  
Author(s):  
YINQIAO PENG ◽  
JICHENG ZHOU ◽  
XUQIANG ZHENG ◽  
BAOXING ZHAO ◽  
XIAOCHAO TAN

Silicon oxycarbide ( SiCO ) thin films were prepared by the RF reactive sputtering technique on n-type silicon substrates with the target of sintered silicon carbide ( SiC ), and high purity oxygen was used as the reactant gas. The as-deposited films were annealed at temperatures of 600°C, 800°C, and 1000°C under nitrogen ambient, respectively. The films were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and photoluminescence (PL) spectrophotometer. The results show that annealing temperature plays an important role in the structure and photoluminescence of the films. The temperature 600°C is the most favorable annealing temperature for SiO 2 crystallization and the formation of 6H- SiC crystal phase in the SiCO films. The intense PL peaks located at 375 nm and 470 nm are observed at room temperature. The origin of the PL was discussed.


2013 ◽  
Vol 770 ◽  
pp. 149-152 ◽  
Author(s):  
T. Plirdpring ◽  
M. Horprathum ◽  
C. Chananonnawathorn ◽  
P. Eiamchai ◽  
A. Harnwunggmoung ◽  
...  

Tantalum oxide (Ta2O5) films at 400 nm thickness were prepared at room temperature by DC reactive magnetron sputtering. The effect of annealing temperature on film crystallinity, microstructure and optical properties were investigated. In order to indentify the crystalline structure and film morphology, X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM) measurements were performance. The optical properties were determined by UV-Vis spectrophotometer and spectroscopic ellipsometry (SE). The result showed that, with the annealing treatment at high temperature (700-900°C), the as-deposited films were crystallized to orthorhombic phase of tantalum pentaoxide (β-Ta2O5). In addition, the transmittance spectrum percentage indicated 87%, which corresponded to the obtained optical characteristic. The refractive index varied at 550 nm from 2.17 to 2.21 with increased of the annealing temperature.


2014 ◽  
Vol 606 ◽  
pp. 15-18
Author(s):  
Falah I. Mustafa ◽  
Mooroj Ali

InxSe1-x(x = 0.4, 0.5, 0.6) thin films are deposited at room temperature on glass substrates with thickness ~500nm by thermal evaporation technique. The X-Ray diffraction analysis showed that both the as-deposited films In2Se3and InSe (x= 0.4 and 0.5) are amorphous in nature while the as-deposited film In3Se2is polycrystalline and the values of energy gap are Eg=1.44eV for In2Se3, Eg=1.16eV for InSe and Eg=0.78eV for In3Se2. The same technique used with insert Argon gas at pressure 0.1 mbar where InxSe1-x(x = 0.4, 0.5, 0.6) thin films are deposited at room temperature on glass substrates with thickness ~100nm. The X-Ray diffraction analysis showed that the as-deposited films In2Se3are amorphous in nature while the as-deposited film InSe and In3Se2are Nanocrystalline with grain size 33nm and 55nm respectively and the values of energy gap are Eg=1.55eV for InSe and Eg=1.28eV for In3Se2. The energy gap of InSe thin films increase with Argon gas assist and phases changes from amorphous and polycrystalline to nanostructure material by thermal vacuum deposition technique.


2008 ◽  
Vol 15 (04) ◽  
pp. 515-518
Author(s):  
S. Y. HUANG ◽  
S. XU ◽  
J. D. LONG ◽  
J. W. CHAI ◽  
Q. J. CHENG

Cadmium sulfide ( CdS ) nanocrystals are successfully fabricated on glass and silicon substrates at room temperature with low-frequency (460 kHz) inductively coupled plasma assisted magnetron sputtering technique. Both size and shape can be controlled by changing deposition parameters and substrates. Field-emission scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction are adopted to measure the properties of CdS nanorods.


Sign in / Sign up

Export Citation Format

Share Document