BUCKLING OF A PLATE ON A PASTERNAK FOUNDATION UNDER UNIFORM IN-PLANE BENDING LOADS

2013 ◽  
Vol 13 (03) ◽  
pp. 1250070 ◽  
Author(s):  
CASEY R. BRISCOE ◽  
SUSAN C. MANTELL ◽  
JANE H. DAVIDSON

In-plane bending loads occur in many thin-walled structures, including web core sandwich panels (foam-filled panels with interior webs) under transverse loading. The design of such structures is limited in part by local buckling of the thin webs and the subsequent impact on stiffness and strength. However, the core material can have a significant impact on web buckling strength and thus must be considered in design. This paper presents solutions for the buckling strength of simply supported plates under in-plane bending loads. The location of the neutral bending axis is allowed to vary and is characterized by a load parameter. A Pasternak model is used to account for the resistance of the foundation to compression and shear. Using the principle of minimum potential energy, buckling solutions are developed for infinitely long plates and representative foundation materials. The solutions match known results for two special cases: Uniform loading with variable foundation, and bending loads with no foundation. An order of magnitude increase in buckling strength is possible, depending on loading and foundation stiffness. The results suggest an important avenue for future development of lightweight structures, including sandwich panels and structures such as plate girders that are not typically associated with the use of foam filling.

2003 ◽  
Vol 125 (4) ◽  
pp. 393-402 ◽  
Author(s):  
S. A. Karamanos ◽  
E. Giakoumatos ◽  
A. M. Gresnigt

The paper investigates the response of elbows under in-plane bending and pressure, through nonlinear finite element tools, supported by experimental results from real-scale tests. The finite element analysis is mainly based on a nonlinear three-node “tube element,” capable of describing elbow deformation in a rigorous manner, considering geometric and material nonlinearities. Furthermore, a nonlinear shell element from a general-purpose finite element program is employed in some special cases. Numerical results are compared with experimental data from steel elbow specimens. The comparison allows the investigation of important issues regarding deformation and ultimate capacity of elbows, with emphasis on relatively thin-walled elbows. The results demonstrate the effects of pressure and the influence of straight pipe segments. Finally, using the numerical tools, failure of elbows under bending moments is examined (cross-sectional flattening or local buckling), and reference to experimental observations is made.


2007 ◽  
Vol 07 (03) ◽  
pp. 487-517 ◽  
Author(s):  
PIZHONG QIAO ◽  
LUYANG SHAN

A variational formulation of the Ritz method is used to establish an eigenvalue problem for the local buckling behavior of composite plates elastically restrained (R) along their four edges (the RRRR plates) and subjected to biaxial compression, and the explicit solution in terms of the rotational restraint stiffness (k) is presented. Based on the different boundary and loading conditions, the explicit local buckling solution for the rotationally restrained plates is simplified to several special cases (e.g. the SSSS, SSCC, CCSS, CCCC, SSRR, RRSS, CCRR, and RRCC plates) under biaxial compression (and further reduced to uniaxial compression) with a combination of simply-supported (S), clamped (C), and/or restrained (R) edge conditions. The deformation shape function is presented by using the unique harmonic functions in both the axes to account for the effect of elastic rotational restraint stiffness (k) along the four edges of the orthotropic plate. A parametric study is conducted to evaluate the influences of the loading ratio (α), the rotational restraint stiffness (k), the aspect ratio (γ), and the flexural-orthotropy parameters (α OR and β OR ) on the local buckling stress resultants of various rotationally restrained plates, and design plots with respect to these parameters are provided. The present explicit local buckling solution of the elastically restrained composite plates and the associated design plots can be employed to facilitate design analysis of composite structures (e.g. stiffened panels, thin-walled structures, and honeycomb cores).


2012 ◽  
Vol 59 ◽  
pp. 11-19 ◽  
Author(s):  
S. Szyniszewski ◽  
B.H. Smith ◽  
J.F. Hajjar ◽  
S.R. Arwade ◽  
B.W. Schafer

1943 ◽  
Vol 10 (2) ◽  
pp. A53-A61
Author(s):  
J. L. Meriam

Abstract The analysis of shells is an important subdivision of the general theory of elasticity, and its application is useful in the solution of engineering problems involving thin-walled structures. A common type of shell is one which possesses symmetry with respect to an axis of revolution. A theory for such shells has been developed by various investigators (1, 2, 3, 6) and applied to a few simple cases such as the cylindrical, spherical, and conical shapes. Boundary conditions, for the most part, have been simple static ones, and conditions of surface loading have been included in certain special cases. This paper extends the theory of axially symmetrical shells by including the body force of rotation about the axis and applies the results to the rotating conical shell. The analysis follows a pattern established by several investigators (1, 2, 3, 6) and for this reason is abbreviated to a considerable extent. Only where the inclusion of the body force makes elucidation advisable or where a slightly different method of approach is used are the steps presented in more detail.


Author(s):  
Sam E. Calisch ◽  
Neil A. Gershenfeld

Honeycomb sandwich panels are widely used for high performance parts subject to bending loads, but their manufacturing costs remain high. In particular, for parts with non-flat, non-uniform geometry, honeycombs must be machined or thermoformed with great care and expense. The ability to produce shaped honeycombs would allow sandwich panels to replace monolithic parts in a number of high performance, space-constrained applications, while also providing new areas of research for structural optimization, distributed sensing and actuation, and on-site production of infrastructure. Previous work has shown methods of directly producing shaped honeycombs by cutting and folding flat sheets of material. This research extends these methods by demonstrating work towards a continuous process for the cutting and folding steps of this process. An algorithm for producing a manufacturable cut-and-fold pattern from a three-dimensional volume is designed, and a machine for automatically performing the required cutting and parallel folding is proposed and prototyped. The accuracy of the creases placed by this machine is characterized and the impact of creasing order is demonstrated. Finally, a prototype part is produced and future work is sketched towards full process automation.


Author(s):  
Shan Jin ◽  
Shuai Yuan ◽  
Yong Bai

In practical application, pipelines will inevitably experience bending and compression during manufacture, transportation and offshore installation. The mechanical behavior of tubes under combined axial compression and bending loads is investigated using experiments and finite element method in this paper. Tubes with D/t ratios in the range of 40 and 97 are adopted in the experiments. Then, the ultimate loads and the local buckling modes of tubes are studied. The commercial software ABAQUS is used to build FE models to simulate the load-shortening responses of tubes under combined loads. The results acquired from the ABAQUS simulation are compared with the ones from verification bending experiment, which are in good agreement with each other. The models in this paper are feasible to analyze the mechanical properties of tubes under combined axial compression and bending loads. The related results may be of interest to the manufacture engineers.


Sign in / Sign up

Export Citation Format

Share Document