scholarly journals Energy-Dissipation Limits in Variance-Based Computing

2018 ◽  
Vol 17 (02) ◽  
pp. 1850013
Author(s):  
Sri Harsha Kondapalli ◽  
Xuan Zhang ◽  
Shantanu chakrabartty

Variance-based logic (VBL) uses the fluctuations or the variance in the state of a particle or a physical quantity to represent different logic levels. In this paper, we show that compared to the traditional bi-stable logic representation, the variance-based representation can theoretically achieve a superior performance trade-off (in terms of energy dissipation and information capacity) when operating at fundamental limits imposed by thermal noise. We show that, in addition to the universal KT ln(1/[Formula: see text]) energy dissipation required for a single bit flip, a bi-stable logic device needs to dissipate at least 4.35[Formula: see text]KT/bit of energy, whereas under similar operating conditions, a VBL device reduces the additional energy dissipation requirements down to sub-KT/bit. These theoretical results are generally enough to be applicable to different instantiations and variants of VBL ranging from digital processors based on energy-scavenging or to processors based on the emerging valleytronic devices.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
George Gillard ◽  
Ian M. Griffiths ◽  
Gautham Ragunathan ◽  
Ata Ulhaq ◽  
Callum McEwan ◽  
...  

AbstractCombining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.


2021 ◽  
pp. 109963622110204
Author(s):  
Abdallah Ghazlan ◽  
Tuan Ngo ◽  
Tay Son Le ◽  
Tu Van Le

Trabecular bone possesses a complex hierarchical structure of plate- and strut-like elements, which is analogous to structural systems encountered in engineering practice. In this work, key structural features of trabecular bone are mimicked to uncover effective energy dissipation mechanisms under blast loading. To this end, several key design parameters were identified to develop a bone-like unit cell. A computer script was then developed to automatically generate bone-like finite element models with many combinations of these design parameters, which were simulated under blast loading. The optimal structure was identified and its performance was benchmarked against traditional engineered cellular structures, including those with hexagonal, re-entrant and square cellular geometries. The bone-like structure showed superior performance over its engineered counterparts using the peak transmitted reaction force and energy dissipation as the key performance criteria.


Author(s):  
S Chilamakuri ◽  
X Zhao ◽  
B Bhushan

Friction/stiction behaviour of ultrahigh-density magnetic disk drives can be controlled by controlling the size and shape of the laser bumps. Tribological behaviour of laser-textured disk surfaces depends on the size and shape of the laser bumps, bump density and operating conditions. In this study, theoretical and experimental analyses have been carried out on nine different laser-textured disk surfaces. Stiction and friction experiments have been carried out on sombrero, V-type and W-type laser-textured disks and these results are compared with theoretical results. A good correlation is obtained between experimental and theoretical results. The effect of laser bump uniformity on critical number of bumps required to prevent plastic deformation and stiction has also been studied.


2013 ◽  
Vol 82 ◽  
pp. 1-8
Author(s):  
Alireza Jafari ◽  
Nick Cartwright ◽  
Amir Etemad-Shahidi ◽  
Mahnaz Sedigh

2020 ◽  
Vol 12 (6) ◽  
pp. 2455
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Dhafer Al Shehri ◽  
Mohamed Bahgat

The oil and gas production operations suffer from scale depositions. The scale precipitations have a damaging impact on the reservoir pores, perforations, downhole and completion equipment, pipeline network, wellhead chokes, and surface facilities. Hydrocarbon production possibly decreased because of the scale accumulation in the well tubular, leading to a well plugging, this requires wells to be shut-in in severe cases to perform a clean-out job. Therefore, scale deposition is badly affecting petroleum economics. This research aims to design a scale dissolver with low cost, non-damaging for the well equipment and has a high performance at the field operating conditions. This paper presents a novel non-corrosive dissolver for sulfate and sulfide composite scale in alkaline pH and works at low-temperature conditions. The scale samples were collected from a production platform from different locations. A complete description of the scale samples was performed as X-ray diffraction (XRD) and X-ray fluorescence (XRF). The new scale dissolver was prepared in different concentrations to examine its dissolution efficiency for the scale with time at low temperatures. The experimental design studied the solid to fluid ratio, temperature, solubility time, and dissolution efficiency in order to achieve the optimum and most economic performance of solubility in terms of high dissolution efficiency with the smallest possible amount of scale dissolver. A solubility comparison was performed with other commercial-scale-dissolvers and the corrosion rate was tested. The experimental work results demonstrated the superior performance of the new scale dissolver. The new scale dissolver showed a solubility efficiency of 91.8% at a low temperature of 45 °C and 79% at 35 °C. The new scale dissolver showed a higher solubility ratio for the scale sample than the ethylenediaminetetraacetic acid (EDTA) (20 wt. %), diethylenetriamine pentaacetic acid (DTPA) (20 wt. %), and HCl (10 wt. %). The corrosion rate for the new non-corrosive dissolver was 0.01357 kg/m2 (0.00278 lb./ft²) which was considered a very low rate and non-damaging for the equipment. The low corrosive effect of the new dissolver will save the extra cost of adding the corrosion inhibitors and save the equipment from the damaging effect of the corrosive acids.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Keyan Liu ◽  
Weijie Dong ◽  
Huanyu Dong ◽  
Jia Wei ◽  
Shiwu Xiao

After renewable energy distributed generator (DG) is connected to the power grid, traditional diverse-electric-information-based fault diagnosis approaches are not suitable for an active distributed network (ADN) due to the weak characteristics of fault current. Thus, this paper proposes a comprehensive nonformula fault diagnostic approach of ADN using only voltage as input. In the preprocess, sequential forward selection (SFS) and sequential backward selection (SBS) are utilized to optimize the input feature matrix of the sample in order to reduce the information redundancy of multiple measuring points in ADN. Then, a single “1-a-1” support vector machine (SVM) classifier is used for fault identification, and a multi-SVM, with radial basis function (RBF) as the kernel function, is applied to identify the location and fault type. To prove the proposed method is adaptable for ADN, two direct drive fans are used as a DG to test the IEEE 33 node model at every 10% of the line under three operating conditions that include all cases of distributed power generation in ADN. Results comparing real-time and historical data show that the proposed multi-SVM model reaches an average fault type diagnosis accuracy of 97.27%, with a fault identification accuracy of 96%. A backpropagation neural network is then compared to the proposed model. The results show the superior performance of the SBS-SFS optimized multi-SVM. This model can be usefully applied to the fault diagnosis of new energy sources with distributed power access to distribution networks.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 578 ◽  
Author(s):  
Hossameldin ◽  
Abdelsalam ◽  
Ibrahim ◽  
Williams

Various industrial applications require a voltage conversion stage from DC to AC. Among them, commercial renewable energy systems (RES) need a voltage buck and/or boost stage for islanded/grid connected operation. Despite the excellent performance offered by conventional two-stage converter systems (dc–dc followed by dc–ac stages), the need for a single-stage conversion stage is attracting more interest for cost and size reduction reasons. Although voltage source inverters (VSIs) are voltage buck-only converters, single stage current source inverters (CSIs) can offer voltage boost features, although at the penalty of using a large DC-link inductor. Boost inverters are a good candidate with the demerit of complicated control strategies. The impedance source (Z-source) inverter is a high-performance competitor as it offers voltage buck/boost in addition to a reduced passive component size. Several pulse width modulation (PWM) techniques have been presented in the literature for three-phase Z-source inverters. Various common drawbacks are annotated, especially the non-linear behavior at low modulation indices and the famous trade-off between the operating range and the converter switches’ voltage stress. In this paper, a modified discontinuous PWM technique is proposed for a three-phase z-source inverter offering: (i) smooth voltage gain variation, (ii) a wide operating range, (iii) reduced voltage stress, and (iv) improved total harmonic distortion (THD). Simulation, in addition to experimental results at various operating conditions, validated the proposed PWM technique’s superior performance compared to the conventional PWM techniques.


2013 ◽  
Vol 361-363 ◽  
pp. 2304-2307
Author(s):  
Rui Ling Yu

The additional energy consumption model of vehicles on a gradient road is introduced in this paper. The numerical simulation of the model shows that the additional energy consumption varies with the different slope. Larger solpe means less additional energy loss on a uphhill road while it is the contrary tendency on the downhill road. The analysis of the simulation result is consistent with the actual.


2016 ◽  
Vol 26 (02) ◽  
pp. 1750034 ◽  
Author(s):  
J. Sangeetha ◽  
P. Renuga

This paper proposes the design of auxiliary-coordinated controller for static VAR compensator (SVC) and thyristor-controlled series capacitor (TCSC) devices by adaptive fuzzy optimized technique for oscillation damping in multimachine power systems. The performance of the coordinated control of SVC and TCSC devices based on feedforward adaptive neuro fuzzy inference system (F-ANFIS) is compared with that of the adaptive neuro fuzzy inference system (ANFIS) structure based on recurrent adaptive neuro fuzzy inference system (R-ANFIS) network architecture. The objective of the coordinated controller design is to tune the parameters of SVC and TCSC fuzzy lead lag compensator simultaneously to minimize the deviation of rotor angle and rotor speed of the generators. The performance of the system is enhanced by optimally tuning the membership functions of fuzzy lead lag controller parameter of the flexible AC transmission system (FACTS) by R-ANFIS controller. The training data for F-ANFIS and R-ANFIS are generated by conventional linear control technique under various operating conditions. The offline trained controller tunes the parameter of lead lag controller in online. The oscillation damping ability of the system is analyzed for three-machine test system by calculating the standard deviation and cost function. The superior performance of R-ANFIS controller is compared with various particle swarm optimization-based feedforward ANFIS controllers available in literature.


Sign in / Sign up

Export Citation Format

Share Document