SEMI-AUTONOMOUS NEEDLE-POSITIONING DEVICE FOR PERCUTANEOUS NEPHROLITHOTOMY PROCEDURES

2011 ◽  
Vol 11 (01) ◽  
pp. 177-203 ◽  
Author(s):  
JEAN-PIERRE CONRADIE ◽  
CORNIE SCHEFFER ◽  
KRISTIAAN SCHREVE ◽  
AMIR ZARRABI

At present, manual needle-positioning techniques known as "triangulation" and "keyhole surgery" are implemented during percutaneous nephrolithotomy (PCNL) to gain initial kidney access. These techniques do not ensure correct needle placement inside the kidney, resulting in multiple needle punctures, unnecessary hemorrhage, excessive radiation exposure to all involved and increased surgery time. A cost-effective fluoroscopy-guided needle-positioning system is proposed for aiding urologists in gaining accurate and repeatable kidney calyx access. Guidance is realized by modeling a C-arm fluoroscopic system as an adapted pinhole camera model and utilizing stereovision principles on an image pair. Targeting is realized with the aid of a graphical user interface operated by the surgeon. An average target registration error of 2.5 mm (SD = 0.8 mm) was achieved in a simulated environment. Similar results were achieved in the operating room environment with successful needle access in two in-vitro porcine kidneys.

2020 ◽  
Vol 32 (2) ◽  
pp. 229-234
Author(s):  
Benjamin Kolb ◽  
John Large ◽  
Stuart Watson ◽  
Glyn Smurthwaite

The authors present a technical note for a prone positioning system developed to facilitate cervical extension osteotomy for ankylosing spondylitis in the presence of severe deformity and frailty. Chin-on-chest deformity represents one of the most debilitating changes of ankylosing spondylitis. Where the chin-brow angle approaches or exceeds 90°, prone positioning becomes problematic due to the fixed position of the head. Furthermore, the challenge is compounded where physiological deconditioning leads to frailty, and the side effects of medical therapies decrease muscle mass and skin quality. Conventional prone positioning equipment is not able to cater to all patients. A versatile system was developed using a 3D reconstruction to enable a positioning simulation and verification tool. The tool was used to comprehensively plan the perioperative episode, including spatial orientation and associated equipment. Three-dimensional printing was used to manufacture a bespoke positioning device that precisely matched the contours of the patient, reducing contact pressure and risk of skin injury. The authors were able to safely facilitate surgery for a patient whose deformity and frailty may otherwise have precluded this possibility. The system has potential safety and economic implications that may be of significant utility to other institutions engaging in complex spinal surgery.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3023-3034
Author(s):  
Weiyuan Liang ◽  
Dou Wang ◽  
Xiaohui Ren ◽  
Chenchen Ge ◽  
Hanyue Wang ◽  
...  

AbstractTwo-dimensional black phosphorus (BP) has been demonstrated to be promising in photoelectronic devices, electrode materials, and biomedicine owing to its outstanding properties. However, the application of BP has been hindered by harsh preparation conditions, high costs, and easy degradation in ambient condition. Herein, we report a facile and cost-effective strategy for synthesis of orthorhombic phase BP and a kind of BP-reduced graphene oxide (BP/rGO) hybrids in which BP remains stable for more than 4 weeks ascribed to the formation of phosphorus-carbon covalent bonds between BP and rGO as well as the protection effect of the unique wrinkle morphology of rGO nanosheets. Surface modification BP/rGO hybrids (PEGylated BP/rGO) exhibit excellent photothermal performance with photothermal conversion efficiency as high as 57.79% at 808 nm. The BP/rGO hybrids exhibit enhanced antitumor effects both in vitro and in vivo, showing promising perspectives in biomedicine.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 736
Author(s):  
Kamila Malecka ◽  
Edyta Mikuła ◽  
Elena E. Ferapontova

Improved outcomes for many types of cancer achieved during recent years is due, among other factors, to the earlier detection of tumours and the greater availability of screening tests. With this, non-invasive, fast and accurate diagnostic devices for cancer diagnosis strongly improve the quality of healthcare by delivering screening results in the most cost-effective and safe way. Biosensors for cancer diagnostics exploiting aptamers offer several important advantages over traditional antibodies-based assays, such as the in-vitro aptamer production, their inexpensive and easy chemical synthesis and modification, and excellent thermal stability. On the other hand, electrochemical biosensing approaches allow sensitive, accurate and inexpensive way of sensing, due to the rapid detection with lower costs, smaller equipment size and lower power requirements. This review presents an up-to-date assessment of the recent design strategies and analytical performance of the electrochemical aptamer-based biosensors for cancer diagnosis and their future perspectives in cancer diagnostics.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zeping Qiu ◽  
Jingwen Zhao ◽  
Fanyi Huang ◽  
Luhan Bao ◽  
Yanjia Chen ◽  
...  

AbstractMyocardial fibrosis and ventricular remodeling were the key pathology factors causing undesirable consequence after myocardial infarction. However, an efficient therapeutic method remains unclear, partly due to difficulty in continuously preventing neurohormonal overactivation and potential disadvantages of cell therapy for clinical practice. In this study, a rhACE2-electrospun fibrous patch with sustained releasing of rhACE2 to shape an induction transformation niche in situ was introduced, through micro-sol electrospinning technologies. A durable releasing pattern of rhACE2 encapsulated in hyaluronic acid (HA)—poly(L-lactic acid) (PLLA) core-shell structure was observed. By multiple in vitro studies, the rhACE2 patch demonstrated effectiveness in reducing cardiomyocytes apoptosis under hypoxia stress and inhibiting cardiac fibroblasts proliferation, which gave evidence for its in vivo efficacy. For striking mice myocardial infarction experiments, a successful prevention of adverse ventricular remodeling has been demonstrated, reflecting by improved ejection fraction, normal ventricle structure and less fibrosis. The rhACE2 patch niche showed clear superiority in long term function and structure preservation after ischemia compared with intramyocardial injection. Thus, the micro-sol electrospun rhACE2 fibrous patch niche was proved to be efficient, cost-effective and easy-to-use in preventing ventricular adverse remodeling.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1635
Author(s):  
Sweeny Chauhan ◽  
Alish Kerr ◽  
Brian Keogh ◽  
Stephanie Nolan ◽  
Rory Casey ◽  
...  

The prevalence of prediabetes is rapidly increasing, and this can lead to an increased risk for individuals to develop type 2 diabetes and associated diseases. Therefore, it is necessary to develop nutritional strategies to maintain healthy glucose levels and prevent glucose metabolism dysregulation in the general population. Functional ingredients offer great potential for the prevention of various health conditions, including blood glucose regulation, in a cost-effective manner. Using an artificial intelligence (AI) approach, a functional ingredient, NRT_N0G5IJ, was predicted and produced from Pisum sativum (pea) protein by hydrolysis and then validated. Treatment of human skeletal muscle cells with NRT_N0G5IJ significantly increased glucose uptake, indicating efficacy of this ingredient in vitro. When db/db diabetic mice were treated with NRT_N0G5IJ, we observed a significant reduction in glycated haemoglobin (HbA1c) levels and a concomitant benefit on fasting glucose. A pilot double-blinded, placebo controlled human trial in a population of healthy individuals with elevated HbA1c (5.6% to 6.4%) showed that HbA1c percentage was significantly reduced when NRT_N0G5IJ was supplemented in the diet over a 12-week period. Here, we provide evidence of an AI approach to discovery and demonstrate that a functional ingredient identified using this technology could be used as a supplement to maintain healthy glucose regulation.


2019 ◽  
Vol 128 (10) ◽  
pp. 894-902 ◽  
Author(s):  
Julia Kristin ◽  
Manuel Burggraf ◽  
Dirk Mucha ◽  
Christoph Malolepszy ◽  
Silvan Anderssohn ◽  
...  

Objective: Navigation systems create a connection between imaging data and intraoperative situs, allowing the surgeon to consistently determine the location of instruments and patient anatomy during the surgical procedure. The best results regarding the target registration error (measurement uncertainty) are normally demonstrated using fiducials. This study aimed at investigating a new registration strategy for an electromagnetic navigation device. Methods: For evaluation of an electromagnetic navigation system and comparison of registration with screw markers and automatic registration, we are calculating the target registration error in the region of the paranasal sinuses/anterior and lateral skull base with the use of an electromagnetic navigation system and intraoperative digital volume tomography (cone-beam computed tomography). We carried out 10 registrations on a head model (total n = 150 measurements) and 10 registrations on 4 temporal bone specimens (total n = 160 measurements). Results: All in all, the automatic registration was easy to perform. For the models that were used, a significant difference between an automatic registration and the registration on fiducials was evident for just a limited number of screws. Furthermore, the observed differences varied in terms of the preferential registration procedure. Conclusion: The automatic registration strategy seems to be an alternative to the established methods in artificial and cadaver models of intraoperative scenarios. Using intraoperative imaging, there is an option to resort to this kind of registration as needed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 394 ◽  
Author(s):  
Viktor Maurer ◽  
Selin Altin ◽  
Didem Ag Seleci ◽  
Ajmal Zarinwall ◽  
Bilal Temel ◽  
...  

Even though the administration of chemotherapeutic agents such as erlotinib is clinically established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly improved using RNA interference (RNAi) mechanisms for a combinational therapy. However, the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core. A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the application of an external magnetic field enhanced the internalization of siRNA, therefore increasing the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a cost-effective commercialization and can be considered as a promising candidate for future siRNA delivery agents.


Sign in / Sign up

Export Citation Format

Share Document