NANOTECHNOLOGY AND HUMAN DISEASES

COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 89-101 ◽  
Author(s):  
GABRIEL YEW HOE LEE ◽  
CHWEE TECK LIM

Tissues, cells and biomolecules can experience changes in their structural and mechanical properties during the occurrence of certain diseases. Recent advances in the fields of nanotechnology, biomechanics and cell and molecular biology have led to the development of state-of-the-art and novel biophysical and nanotechnological tools to probe the mechanical properties of individual living cells and biomolecules. Here we will review the basic principles and application of some of these nanotechnological tools used to relate changes in the elastic and viscoelastic properties of cells to alterations in the cellular and molecular structures induced by diseases such as malaria and cancer. Knowing the ways and the extent to which mechanical properties of living cells are altered with the onset of disease progression will be crucial for us to gain vital insights into the pathogenesis and pathophysiology of malaria and cancer, and potentially offers the opportunity to develop new and better methods of detection, diagnosis and treatment.

Soft Matter ◽  
2021 ◽  
Author(s):  
Nathan Vinx ◽  
Pascal Damman ◽  
Philippe Leclere ◽  
Bruno Bresson ◽  
Christian Frétigny ◽  
...  

This work aims at understanding the influence of the substrate temperature (Ts) on the viscoelastic properties of propanethiol plasma polymer films (PPF). By means of state-of-the-art AFM characterization-based techniques including...


2002 ◽  
Vol 124 (4) ◽  
pp. 408-421 ◽  
Author(s):  
Vale´rie M. Laurent ◽  
Sylvie He´non ◽  
Emmanuelle Planus ◽  
Redouane Fodil ◽  
Martial Balland ◽  
...  

We compare the measurements of viscoelastic properties of adherent alveolar epithelial cells by two micromanipulation techniques: (i) magnetic twisting cytometry and (ii) optical tweezers, using microbeads of same size and similarly attached to F-actin. The values of equivalent Young modulus E, derived from linear viscoelasticity theory, become consistent when the degree of bead immersion in the cell is taken into account. E-values are smaller in (i) than in (ii): ∼34–58 Pa vs ∼29–258 Pa, probably because higher stress in (i) reinforces nonlinearity and cellular plasticity. Otherwise, similar relaxation time constants, around 2 s, suggest similar dissipative mechanisms.


Nanoscale ◽  
2018 ◽  
Vol 10 (42) ◽  
pp. 19799-19809 ◽  
Author(s):  
Pablo D. Garcia ◽  
Ricardo Garcia

Understanding the relationship between the mechanical properties of living cells and physiology is a central issue in mechanobiology.


Author(s):  
Cecil E. Hall

The visualization of organic macromolecules such as proteins, nucleic acids, viruses and virus components has reached its high degree of effectiveness owing to refinements and reliability of instruments and to the invention of methods for enhancing the structure of these materials within the electron image. The latter techniques have been most important because what can be seen depends upon the molecular and atomic character of the object as modified which is rarely evident in the pristine material. Structure may thus be displayed by the arts of positive and negative staining, shadow casting, replication and other techniques. Enhancement of contrast, which delineates bounds of isolated macromolecules has been effected progressively over the years as illustrated in Figs. 1, 2, 3 and 4 by these methods. We now look to the future wondering what other visions are waiting to be seen. The instrument designers will need to exact from the arts of fabrication the performance that theory has prescribed as well as methods for phase and interference contrast with explorations of the potentialities of very high and very low voltages. Chemistry must play an increasingly important part in future progress by providing specific stain molecules of high visibility, substrates of vanishing “noise” level and means for preservation of molecular structures that usually exist in a solvated condition.


2020 ◽  
Vol 12 ◽  
Author(s):  
Francisco Basílio ◽  
Ricardo Jorge Dinis-Oliveira

Background: Pharmacobezoars are specific types of bezoars formed when medicines, such as tablets, suspensions, and/or drug delivery systems, aggregate and may cause death by occluding airways with tenacious material or by eluting drugs resulting in toxic or lethal blood concentrations. Objective: This work aims to fully review the state-of-the-art regarding pathophysiology, diagnosis, treatment and other relevant clinical and forensic features of pharmacobezoars. Results: patients of a wide range of ages and in both sexes present with signs and symptoms of intoxications or more commonly gastrointestinal obstructions. The exact mechanisms of pharmacobezoar formation are unknown but is likely multifactorial. The diagnosis and treatment depend on the gastrointestinal segment affected and should be personalized to the medication and the underlying factor. A good and complete history, physical examination, image tests, upper endoscopy and surgery through laparotomy of the lower tract are useful for diagnosis and treatment. Conclusion: Pharmacobezoars are rarely seen in clinical and forensic practice. They are related to controlled or immediate-release formulations, liquid or non-digestible substances, in normal or altered digestive motility/anatomy tract, and in overdoses or therapeutic doses, and should be suspected in the presence of risk factors or patients taking drugs which may form pharmacobezoars.


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Yoko Okahisa ◽  
Keisuke Kojiro ◽  
Hatsuki Ashiya ◽  
Takeru Tomita ◽  
Yuzo Furuta ◽  
...  

Abstract Age is an important factor that dictates bamboo’s mechanical properties. In Japan, bamboo plants aged 3–5 years are selected for use as materials because of their robustness and decorative or craft-friendly characteristics. In this study, the age-dependent and radial sectional differences in bamboo’s dynamic viscoelastic properties in relation to lignin structural variation, were evaluated. We used Phyllostachys pubescens samples at the current year and at 1.5, 3.5, 6.5, 9.5, 12.5, and 15.5 years of age. There was a clear age dependence in the peak temperature of tan δ and in the yield of thioacidolysis products derived from β-O-4 lignin structures. The highest peak temperature tan δ value was detected in 3.5-year-old bamboo, which contained the highest amount of the thioacidolysis products. Moreover, tan δ’s peak temperature was always higher on the outer side, and the ratio of S/G thioacidolysis products was always higher on the inner side of bamboo plants of all ages. These results suggest that changes in bamboo’s thermal softening properties from aging are caused by the maturation and degradation of lignin in bamboo.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mathilde Tiennot ◽  
Davide Iannuzzi ◽  
Erma Hermens

AbstractIn this investigation on the mechanical behaviour of paint films, we use a new ferrule-top nanoindentation protocol developed for cultural heritage studies to examine the impact of repeated relative humidity variations on the viscoelastic behaviour of paint films and their mechanical properties in different paint stratigraphies through the changes in their storage and loss moduli. We show that the moisture weathering impact on the micromechanics varies for each of these pigment-oil systems. Data from the nanoindentation protocol provide new insights into the evolution of the viscoelastic properties dsue to the impact of moisture weathering on paint films.


2021 ◽  
Vol 11 (5) ◽  
pp. 2000
Author(s):  
Behnam Mobaraki ◽  
Haiying Ma ◽  
Jose Antonio Lozano Galant ◽  
Jose Turmo

This paper presents the application of the observability technique for the structural system identification of 2D models. Unlike previous applications of this method, unknown variables appear both in the numerator and the denominator of the stiffness matrix system, making the problem non-linear and impossible to solve. To fill this gap, new changes in variables are proposed to linearize the system of equations. In addition, to illustrate the application of the proposed procedure into the observability method, a detailed mathematical analysis is presented. Finally, to validate the applicability of the method, the mechanical properties of a state-of-the-art plate are numerically determined.


2018 ◽  
Vol 114 (3) ◽  
pp. 513a
Author(s):  
Yuri M. Efremov ◽  
Mirian Velay-Lizancos ◽  
Daniel M. Suter ◽  
Pablo D. Zavattieri ◽  
Arvind Raman

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 571-599
Author(s):  
Ricardo Donate ◽  
Mario Monzón ◽  
María Elena Alemán-Domínguez

AbstractPolylactic acid (PLA) is one of the most commonly used materials in the biomedical sector because of its processability, mechanical properties and biocompatibility. Among the different techniques that are feasible to process this biomaterial, additive manufacturing (AM) has gained attention recently, as it provides the possibility of tuning the design of the structures. This flexibility in the design stage allows the customization of the parts in order to optimize their use in the tissue engineering field. In the recent years, the application of PLA for the manufacture of bone scaffolds has been especially relevant, since numerous studies have proven the potential of this biomaterial for bone regeneration. This review contains a description of the specific requirements in the regeneration of bone and how the state of the art have tried to address them with different strategies to develop PLA-based scaffolds by AM techniques and with improved biofunctionality.


Sign in / Sign up

Export Citation Format

Share Document