scholarly journals Comparison of Design of Experiments via Traditional and Taguchi Method

2016 ◽  
Vol 15 (03) ◽  
pp. 151-160 ◽  
Author(s):  
M. N. Islam ◽  
A. Pramanik

This paper presents a case study on comparison of Design of Experiments (DOE) via traditional and Taguchi methods in terms of efficiency. First, a three-level, four-parameter, full factorial DOE was conducted for finding the effects of machining parameters on the surface roughness (arithmetic average) of parts produced by turning operation. The results were analyzed applying average response, Taguchi’s [Formula: see text]/[Formula: see text] ratio, and Pareto ANOVA. Subsequently, the same data was analyzed applying Taguchi’s L9 orthogonal array. The comparison of two results revealed that despite an 88.9% savings of experimental runs with the Taguchi method, both methods produced similar results.

2014 ◽  
Vol 660 ◽  
pp. 275-279 ◽  
Author(s):  
Ali Rafidah ◽  
A. Nurulhuda ◽  
A. Azrina ◽  
Y. Suhaila ◽  
I.S. Anwar ◽  
...  

Statistical quality improvement techniques such as design of experiments (DOE) and Taguchi methods form an essential part of the search for improved product performance. This paper applies both the Taguchi and full factorial design techniques to highlight the application and to compare the effectiveness of the Taguchi and full factorial design processes as applied on surface roughness. Besides that, to determine the optimal parameter setting for each factor in surface roughness. For this study, we used two different probes of Mahr Surf XR20 which was MFW 250 tracing arm 6851804 (25μm) and tracing arm 6851806 (50μm). The main effect and interaction plot had been analyzed by using MINITAB (software). The experiment result showed that full factorial design performs better than Taguchi method.


2010 ◽  
Vol 126-128 ◽  
pp. 885-890
Author(s):  
K.P. Somashekhar ◽  
N. Ramachandran ◽  
Jose Mathew

This work is on the preparation of microelectrodes for μ-EDM operation using μ-WEDG process. Electrodes of Ø500 μm are fabricated with various discharge energy machining conditions. Effects of gap voltage, capacitance & feed rate on the surface finish of the electrodes and overcut of the thus produced micro holes are investigated. The profile of microelectrodes is measured using surface roughness tester with 2μm stylus interfaced with SURFPAK software. The study demonstrated that for brass electrodes an arithmetic average roughness value as low as 1.7μm and an overcut of 3 µm could be achieved. The significant machining parameters are found using ANOVA. Surface of the produced microelectrodes are examined using Scanning Electron Microscope. μ-WEDG process parameters could be adjusted to achieve good surface integrity on microelectrodes. Experimental results showed that the surface roughness of microelectrodes depended primarily on feed rate of the electrode. The observations showed the clear and quantitative correlation existing between the micrometer level surface quality and process parameters. The resulting microelectrodes are found to be of exceptionally high quality and could be used for μ- EDM operation on different types of work materials.


Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


2020 ◽  
Vol 10 (3) ◽  
pp. 824
Author(s):  
Imran Mohsin ◽  
Kai He ◽  
Zheng Li ◽  
Feifei Zhang ◽  
Ruxu Du

Surface finishing and polishing are important quality assurance processes in many manufacturing industries. A polished surface (low surface roughness) is linked with many useful properties other than providing an appealing gloss to the product, such as surface friction, electrical and chemical resistance, thermal conductivity, reflection, and product life. All these properties require an efficient polishing system working with the best machining parameters. This study analyzed the effects of the different input polishing parameters on the polishing efficiency and torque in the robotic polishing system for the circular-shaped workpieces (such as ring, cylinder, sphere, cone, etc.) by using the Taguchi method and analysis of variance (ANOVA). A customized rotatory passive gripper is designed to hold the watch bezel during polishing. Under the design of experiments (DOE) technique, Taguchi’s L 18 array is selected to find the optimized process parameters for polishing efficiency (based on surface roughness) and torque. Experimental results with the statistical analysis by signal-to-noise ratio and ANOVA (95% confidence level) confirms that the polishing force and tool speed are the most influencing parameter for polishing efficiency in the system. Linear regression equations are modeled for the polishing efficiency and torque. Finally, a confirmation test is conducted for the validation of the experimentation results against actual results.


2019 ◽  
Vol 52 (9-10) ◽  
pp. 1272-1281 ◽  
Author(s):  
Duc Nam Nguyen ◽  
Ngoc Le Chau ◽  
Thanh-Phong Dao ◽  
Chander Prakash ◽  
Sunpreet Singh

The surface quality and accuracy of the geometry of the cylindrical rollers are important factors for bearing life. This paper presents effects of machining parameters on the surface roughness, topography and roundness of cylindrical rollers through the lapping and polishing experiments. And then the surface roughness of the cylindrical rollers is optimized. The results found that the surface roughness of rollers is significantly changed in lapping process with different abrasive particle sizes, while the surface roughness has slightly reduced in polishing process. It also indicated that the smoother surfaces with better roughness can be obtained after lapping and polishing process. In addition, the surface roughness of cylindrical rollers is rapidly reduced from Ra of 0.5 µm to Ra of 0.063 µm after the 3-h lapping process and Ra of 0.013 µm after the 1-h polishing process. The surface topography of rollers can be achieved by the smoother surface when loads are from 25 to 35 N in lapping process, and the loads are from 35 to 40 N in polishing process. Finally, the Taguchi method is applied to optimize the surface roughness in polishing process. The result found that the optimal surface roughness achieves 0.015 µm with respect to the time of 35 min and type of 4000# Al2O3.


2021 ◽  
pp. 2150021
Author(s):  
P. RAVEENDRAN ◽  
S. V. ALAGARSAMY ◽  
M. RAVICHANDRAN ◽  
M. MEIGNANAMOORTHY

The intend of this research work is to explore the effect of various parameters in a CNC turning process like cutting speed ([Formula: see text]), feed ([Formula: see text]), and depth of cut ([Formula: see text]) on surface roughness (Ra) of turning AA7075 filled with 10[Formula: see text]wt.% of TiO2 composite fabricated through stir casting method. Taguchi method and decision tree (DT) algorithm were utilized to foresee the surface roughness (Ra) of the proposed composite. The microstructure of composite was ensured with the presence of TiO2 particles dispersed in a homogeneous manner within the matrix material. The machining of composite was carried out by using the CNC turning center and tungsten carbide insert as tool material. This experimental work was designed on L27 (33) orthogonal array using Taguchi’s design of experiments. From its signal-to-noise (S/N) ratio study, the minimum surface roughness (Ra) was obtained at the optimum level of parameters with the cutting speed at 1500[Formula: see text]rpm, feed at 0.15[Formula: see text]mm/rev and depth of cut at 0.3[Formula: see text]mm. Analysis of variance (ANOVA) and decision tree (DT) algorithm were used to identify the significant effect of parameters. The experimental result shows that depth of cut was the major significant parameter on surface roughness (Ra) when compared to cutting speed and feed.


Sign in / Sign up

Export Citation Format

Share Document