scholarly journals The Holographic cosmology with axion field

Author(s):  
A. A. Saharian ◽  
A. V. Timoshkin

In this paper, we considered an axion F(R) gravity model and described, with the help of holographic principle, the cosmological models of viscous dark fluid coupled with axion matter in a spatially flat Friedmann–Robertson–Walker (FRW) universe. This description based on generalized infrared-cutoff holographic dark energy was proposed by Nojiri and Odintsov. We explored the Little Rip, the Pseudo Rip, and the power-law bounce cosmological models in terms of the parameters of the inhomogeneous equation of the state of viscous dark fluid and calculated the infrared cutoffs analytically. We represented the energy conservation equation for the dark fluid from a holographic point of view and showed a correspondence between the cosmology of a viscous fluid and holographic cosmology. We analyzed the autonomous dynamic system. In the absence of interaction between fluids, solutions are obtained corresponding to two cases. In the first case, dark energy is missing and the extension describes the component of dark matter. The second case corresponds to cosmological models with an extension due to dark energy. The solutions obtained are investigated for stability. For a cosmological model with the interaction of a special type, the stability of solutions of the dynamic system is also investigated.

2019 ◽  
Vol 16 (11) ◽  
pp. 1950171
Author(s):  
Abdulla Al Mamon ◽  
Pritikana Bhandari ◽  
Subenoy Chakraborty

In this work, we have made an attempt to investigate the dark energy possibility from the thermodynamical point of view. For this purpose, we have studied thermodynamic stability of three popular dark energy models in the framework of an expanding, homogeneous, isotropic and spatially flat FRW Universe filled with dark energy and cold dark matter. The models considered in this work are Chevallier–Polarski–Linder (CPL) model, Generalized Chaplygin Gas (GCG) model and Modified Chaplygin Gas (MCG) model. By considering the cosmic components (dark energy and cold dark matter) as perfect fluid, we have examined the constraints imposed on the total equation of state parameter ([Formula: see text]) of the dark fluid by thermodynamics and found that the phantom nature ([Formula: see text]) is not thermodynamically stable. Our investigation indicates that the dark fluid models (CPL, GCG and MCG) are thermodynamically stable under some restrictions of the parameters of each model.


2008 ◽  
Vol 17 (01) ◽  
pp. 111-133
Author(s):  
ORCHIDEA MARIA LECIAN ◽  
GIOVANNI MONTANI

We analyze the dynamical implications of an exponential Lagrangian density for the gravitational field, as referred to an isotropic FRW Universe. Then, we discuss the features of the generalized de Sitter phase, predicted by the new Friedmann equation. The existence of a consistent de Sitter solution arises only if the ratio between the vacuum energy density and that associated with the fundamental length of the theory acquires a tantalizing negative character. This choice allows us to explain the present Universe dark energy as a relic of the vacuum-energy cancellation due to the cosmological constant intrinsically contained in our scheme. The corresponding scalar-tensor description of the model is addressed too, and the behavior of the scalar field is analyzed for both negative and positive values of the cosmological term. In the first case, the Friedmann equation is studied both in vacuum and in the presence of external matter, while, in the second case, the quantum regime is approached in the framework of "repulsive" properties of the gravitational interaction, as described in recent issues in loop quantum cosmology. In particular, in the vacuum case, we find a pure non-Einsteinian effect, according to which a negative cosmological constant provides an accelerating de Sitter dynamics, in the region where the series expansion of the exponential term does not hold.


2019 ◽  
Vol 17 (02) ◽  
pp. 2050023 ◽  
Author(s):  
I. Brevik ◽  
A. V. Timoshkin

We investigate bounce cosmological models in the presence of a viscous fluid, making use of generalized holographic cutoffs introduced by Nojiri and Odintsov [Covariant generalized holographic dark energy and accelerated universe, Eur. Phys. J. C 77 (2017) 528, arXiv:1703.06372 [hep-th]]. We consider both an exponential, a power-law, and a double exponential form for the scale factor. By use of these models, we calculate expressions for infrared cutoffs analytically, such that they correspond to the particle horizon at the bounce. Finally, we derive the energy conservation equation, from the holographic point of view. In that way, the relationship between the viscous fluid bounce and the holographic bounce is demonstrated.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 769
Author(s):  
Martiros Khurshudyan ◽  
Ratbay Myrzakulov

The goal of this paper is to study new cosmological models where the dark energy is a varying Chaplygin gas. This specific dark energy model with non-linear EoS had been often discussed in modern cosmology. Contrary to previous studies, we consider new forms of non-linear non-gravitational interaction between dark matter and assumed dark energy models. We applied the phase space analysis allowing understanding the late time behavior of the models. It allows demonstrating that considered non-gravitational interactions can solve the cosmological coincidence problem. On the other hand, we applied Bayesian Machine Learning technique to learn the constraints on the free parameters. In this way, we gained a better understanding of the models providing a hint which of them can be ruled out. Moreover, the learning based on the simulated expansion rate data shows that the models cannot solve the H0 tension problem.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050075
Author(s):  
Nasr Ahmed ◽  
Kazuharu Bamba ◽  
F. Salama

In this paper, we study the possibility of obtaining a stable flat dark energy-dominated universe in a good agreement with observations in the framework of Swiss-cheese brane-world cosmology. Two different brane-world cosmologies with black strings have been introduced for any cosmological constant [Formula: see text] using two empirical forms of the scale factor. In both models, we have performed a fine-tuning between the brane tension and the cosmological constant so that the Equation of state (EoS) parameter [Formula: see text] for the current epoch, where the redshift [Formula: see text]. We then used these fine–tuned values to calculate and plot all parameters and energy conditions. The deceleration–acceleration cosmic transition is allowed in both models, and the jerk parameter [Formula: see text] at late-times. Both solutions predict a future dark energy-dominated universe in which [Formula: see text] with no crossing to the phantom divide line. While the pressure in the first solution is always negative, the second solution predicts a better behavior of cosmic pressure where the pressure is negative only in the late-time accelerating era but positive in the early-time decelerating era. Such a positive-to-negative transition in the evolution of pressure helps to explain the cosmic deceleration–acceleration transition. Since black strings have been proved to be unstable by some authors, this instability can actually reflect doubts on the stability of cosmological models with black strings (Swiss-cheese type brane-worlds cosmological models). For this reason, we have carefully investigated the stability through energy conditions and sound speed. Because of the presence of quadratic energy terms in Swiss-cheese type brane-world cosmology, we have tested the new nonlinear energy conditions in addition to the classical energy conditions. We have also found that a negative tension brane is not allowed in both models of the current work as the energy density will no longer be well defined.


2010 ◽  
Vol 332 (2) ◽  
pp. 497-502 ◽  
Author(s):  
K. S. Adhav ◽  
A. S. Bansod ◽  
S. L. Munde ◽  
R. G. Nakwal

2017 ◽  
Vol 15 (01) ◽  
pp. 1830001 ◽  
Author(s):  
G. S. Khadekar ◽  
Deepti Raut

In this paper, we present two viscous models of non-perfect fluid by avoiding the introduction of exotic dark energy. We consider the first model in terms of deceleration parameter [Formula: see text] has a viscosity of the form [Formula: see text] and the other model in quadratic form of [Formula: see text] of the type [Formula: see text]. In this framework we find the solutions of field equations by using inhomogeneous equation of state of form [Formula: see text] with equation of state parameter [Formula: see text] is constant and [Formula: see text].


2018 ◽  
Vol 615 ◽  
pp. A67 ◽  
Author(s):  
P. A. González-Morales ◽  
E. Khomenko ◽  
T. P. Downes ◽  
A. de Vicente

The interaction of plasma with magnetic field in the partially ionised solar atmosphere is frequently modelled via a single-fluid approximation, which is valid for the case of a strongly coupled collisional media, such as solar photosphere and low chromosphere. Under the single-fluid formalism the main non-ideal effects are described by a series of extra terms in the generalised induction equation and in the energy conservation equation. These effects are: Ohmic diffusion, ambipolar diffusion, the Hall effect, and the Biermann battery effect. From the point of view of the numerical solution of the single-fluid equations, when ambipolar diffusion or Hall effects dominate can introduce severe restrictions on the integration time step and can compromise the stability of the numerical scheme. In this paper we introduce two numerical schemes to overcome those limitations. The first of them is known as super time-stepping (STS) and it is designed to overcome the limitations imposed when the ambipolar diffusion term is dominant. The second scheme is called the Hall diffusion scheme (HDS) and it is used when the Hall term becomes dominant. These two numerical techniques can be used together by applying Strang operator splitting. This paper describes the implementation of the STS and HDS schemes in the single-fluid code MANCHA3D. The validation for each of these schemes is provided by comparing the analytical solution with the numerical one for a suite of numerical tests.


Author(s):  
Iulia Clitan ◽  
◽  
Adela Puscasiu ◽  
Vlad Muresan ◽  
Mihaela Ligia Unguresan ◽  
...  

Since February 2020, when the first case of infection with SARS COV-2 virus appeared in Romania, the evolution of COVID-19 pandemic continues to have an ascending allure, reaching in September 2020 a second wave of infections as expected. In order to understand the evolution and spread of this disease over time and space, more and more research is focused on obtaining mathematical models that are able to predict the evolution of active cases based on different scenarios and taking into account the numerous inputs that influence the spread of this infection. This paper presents a web responsive application that allows the end user to analyze the evolution of the pandemic in Romania, graphically, and that incorporates, unlike other COVID-19 statistical applications, a prediction of active cases evolution. The prediction is based on a neural network mathematical model, described from the architectural point of view.


Sign in / Sign up

Export Citation Format

Share Document