Synthesis and Photocatalytic Properties of SnSe2/Se Heterojunction Films

NANO ◽  
2018 ◽  
Vol 13 (04) ◽  
pp. 1850045
Author(s):  
Jing Li ◽  
Hongxiao Zhao ◽  
Yan Lei ◽  
Qingyuan Yang ◽  
Zhi Zheng

SnSe2/Se heterojunction films were successfully grown on fluorine-doped tin oxide (FTO) glass for the first time via a one-step solvothermal route using magnetron sputtered Sn metallic precursors, Se powders as selenium source, cyclohexanol as solvent and cyclohexanol as auxiliary solvent, respectively. The SnSe2/Se heterojunction films consisted of Se nanoparticles or nanorods cluster and SnSe2 network surface layers. The crystalline phase and morphology of SnSe2/Se films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), respectively. The photocatalysis measurements of the products for rhodamine Blue (RhB) demonstrated that SnSe2/Se heterojunction films revealed better dye degradation properties than SnSe2 nanosheet films due to the higher separation rates of photogenerated electron–hole pairs of SnSe2/Se heterojunction films, which can be confirmed by surface transient photovoltage (TPV) analyzer.

NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850051 ◽  
Author(s):  
Yanan Li ◽  
Zhongmin Liu ◽  
Yaru Li ◽  
Yongchuan Wu ◽  
Jitao Chen ◽  
...  

The Bi2S3-TiO2-RGO composites were synthesized by a facile one-step hydrothermal method and applied for the photocatalytic degradation of Rhodamine B (Rh B) under the visible light. The Bi2S3-TiO2-RGO composites were characterized by transmission electron microscopy, X-ray diffraction, Raman and Fourier transform infrared spectrometer. The results indicated that the Bi2S3-TiO2-RGO composites were successfully prepared, and Ti-O-C and S-C bonds were existing among Bi2S3, TiO2 as well as RGO. Furthermore, the photocatalytic ability of Bi2S3-TiO2-RGO composites was excellent under visible light due to its responding to the whole visible light region, low recombination rate of photogenerated electron–hole pairs and relatively negative conduction band. Rh B photocatalytic degradation rate was 99.5% after 50[Formula: see text]min and still could reach 98.4% after five cycles. Finally, a formation mechanism as well as a photocatalytic mechanism of Bi2S3-TiO2-RGO composites were proposed based on the experimental results.


2018 ◽  
Vol 71 (12) ◽  
pp. 965
Author(s):  
Lingfeng Ruan ◽  
Rongying Jiang ◽  
Jing Liu ◽  
Song Liu

BaTiO3/TiO2 and CaTiO3/TiO2 bilayer-type photocatalyst films have been prepared and characterised by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, UV-vis, and scanning electron microscopy techniques. The photodeposition of silver was done to confirm the reduction positions of the titanate/TiO2 films. Silver deposited preferentially on the side of TiO2 for BaTiO3/TiO2 whereas on the side of CaTiO3 for CaTiO3/TiO2. These results imply that the direction of photogenerated electron transfer is coincident with the semiconductor physical principles. Upon exposure to light, electron–hole pairs are generated and subsequently separated by an internal electrostatic field in the titanate–TiO2 heterojunction.


2020 ◽  
Vol 9 (3) ◽  
pp. 94-100
Author(s):  
Kim Nguyen Van ◽  
Nga Nguyen Thi Viet ◽  
Tuyen Vo Thi Thanh ◽  
Vien Vo

Composite ZnO/CuO was prepared by direct formation of ZnO from Zn(OOCCH3)2 precursor in the presence of CuO with the assistant of the microwave system. The obtained composite was characterized by X-Ray Diffraction (XRD) and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-vis DRS), which shows that the composite with a bandgap of 3.27 eV contains two components, ZnO and CuO. The photocatalytic activity of ZnO/CuO was assessed by the degradation of methylene blue (MB) in water under visible light, shows that the photocatalytic activity for the ZnO/CuO composite was remarkably improved compared to single ZnO and CuO. This result is attributed to the reduced recombination rate of photogenerated electron-hole pairs by the presence of CuO in the composite, therefore photocatalysis activity increases.


2020 ◽  
Vol 20 (12) ◽  
pp. 7506-7515
Author(s):  
Wei Huang ◽  
Qing-Mei Yu ◽  
Yan-Yan Wang ◽  
Yue-Yang Xu ◽  
Wei Zhou ◽  
...  

Magnetic Ni0.5Zn0.5Fe2O4/ZnO-R (NZFO/ZnO-R) nanocomposites are prepared via the rapid combustion-coprecipitation process, and they are characterized by the Fourier Transform Infrared Spectroscopy (FTIR), the X-ray Diffraction (XRD), the Scanning Electron Microscopy (SEM), the Energy Dispersive X-ray Detector (EDX), the Specific Surface Area (BET), the UV-vis Diffuse Reflection Spectroscopy (DRS), and the Vibrating Sample Magnetometer (VSM). The photocatalytic activity of NZFO/ZnO-R nanocomposites is assessed in ultraviolet light (365 nm) by decoloration of methylene blue (MB). The results show that the magnetic NZFO/ZnO-0.2 nanocomposites consist of particles and rods. The size of particles is 18 nm. The width and length of rods are 66 nm and 198 nm, respectively. NZFO/ZnO-0.5 nanocomposites have better photocatalytic performance than that of NZFO, ZnO and NZFO/ZnO-R (R = 0.2, 0.3, 0.4, 0.6, or 0.7) from the results. Through careful investigation of influencing parameters (the amount of catalysts, pH and concentration of MB solution), the degradation efficiency of MB is closely connected with the transparency of solution and surface charge of catalysts. The enhanced photocatalytic activity of NZFO/ZnO-0.5 nanocomposites can be ascribed to the matching band positions between ZnO and NZFO, which results in a low recombination between the photogenerated electron-hole pairs. The possible mechanism is proposed for the improved ultraviolet photocatalytic activity of NZFO/ZnO-0.5 nanocomposites.


2017 ◽  
Vol 76 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Yongzheng Duan ◽  
Yulian Shen

The photocatalytic properties of ZnO-CuO catalysts supported on siliceous MCM-48 (Mobil Composition of Matter No. 48) for the degradation of organic pollutions such as methylene blue and salicylic acid under UV light irradiation were investigated. These catalysts were prepared by impregnation of MCM-48 with a mixed aqueous solution of copper acetate and zinc acetate. X-ray diffraction, N2-physisorption, high resolution transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and photoluminescence were used to characterize these samples. Results from characterizations showed that the addition of ZnO to CuO/MCM-48 could markedly improve the photocatalytic degradation properties. The enhanced photocatalytic behaviors of ZnO-CuO/MCM-48 may be due to the formation of p-n heterojunctions between ZnO and CuO, resulting in the effective separation of photogenerated electron–hole pairs. Moreover, the photocatalysts were easily recovered and reused for five cycles without considerable loss of activity.


2021 ◽  
Vol 63 (11) ◽  
pp. 42-46
Author(s):  
Hung Thanh Tung Mai ◽  
◽  
Thi Hong Ngoc Doan ◽  
Ngoc Kim Tuyen Nguyen ◽  
Minh The Do ◽  
...  

Direct Z-scheme g-C3N4/V2O5 photocatalysts were prepared through a sonication-assisted calcination method. The obtained samples were characterised by X-ray diffraction (XRD),Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscope (SEM), andPhotoluminescence spectroscopy (PL). Oxidations of tetracycline hydrochloride (TC) were employed to evaluate the photocatalytic activities of the obtained g-C3N4/V2O5materials. Different weight ratios (5, 10, 15, and 20%) of g-C3N4/V2O5 loaded composites were prepared, in which a 15% (CV-15) loaded composite was found to show optimal catalytic performance for the reaction. The degradation conversation of TC has achieved approximately 79.67% in CV-15 after a 2-hour reaction. g-C3N4/V2O5 photocatalystwas more active than the individual g-C3N4 and V2O5 materials, which could be attributed to the efficient separation of photogenerated electron-hole pairs shown in the photocatalytic mechanism of TC degradation.


2014 ◽  
Vol 809-810 ◽  
pp. 912-915
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Li Min Dong ◽  
Gui Lin Wang ◽  
Ze Wu ◽  
...  

RGO/BiVO4powders were prepared by a hydrothermal method. The crystal structure of RGO/BiVO4was investigated by X-ray diffraction (XRD). Scanning electron microscope (SEM) was used to characterize the micro-morphology of RGO/BiVO4. The recombination rate of photogenerated electron-hole pairs were investigated by fluorescence spectrophotometer. Photocatalytic properties of the prepared samples were examined by studying the degradation of model dyes magenta.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Carlos Alberto Ríos-Reyes ◽  
German Alfonso Reyes-Mendoza ◽  
José Antonio Henao-Martínez ◽  
Craig Williams ◽  
Alan Dyer

This study reports for the first time the geologic occurrence of natural zeolite A and associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite, pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite, with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to processes of high diagenesis, temperatures up to 80–100 °C, with weathering contributions, which increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral composition of the mudstones and scanning electron micrographs show the typical cubic morphology of Na–A zeolite of approximately 0.45 mμ in particle size. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A literature review shows that this is an unusual example of the occurrence of natural zeolites in sedimentary marine rocks recognized around the world.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


Sign in / Sign up

Export Citation Format

Share Document